Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acute coronary syndromes without coronary plaque rupture

Key Points

  • Disruption of the fibrous cap on vulnerable atherosclerotic coronary plaques leads to exposure of the thrombogenic lipid core to the bloodstream, and is responsible for two-thirds of all coronary events

  • In approximately one-third of patients with acute coronary syndrome (ACS), the thrombus develops after intimal erosion without fibrous cap rupture

  • Advances in plaque imaging have allowed clinicians to treat patients with ACS based not only on clinical manifestations, angiographic characteristics, and biomarker data, but also on plaque morphology

  • The use of optical coherence tomography without angiographically obvious plaque rupture can assist in identification and characterization of the culprit lesion plaque morphology

  • Conservative pharmacologic treatment without revascularization might be appropriate in some patients with an intact fibrous cap

Abstract

The latest advances in plaque imaging have provided clinicians with opportunities to treat acute coronary syndrome (ACS) and provide individualized treatment recommendations based not only on clinical manifestations, angiographic characteristics, and biomarker data, but also on the findings of plaque morphology. Although a substantial proportion of ACS events originate from plaques with an intact fibrous cap (IFC), clinicians predominantly equate ACS with plaque rupture arising from thin-cap fibroatheromas. In this Review, we discuss the recent advances in our understanding of plaque morphology in ACS with IFC, reviewing contemporary data from intravascular imaging. We also explore whether use of such imaging might provide a roadmap for more effective management of patients with ACS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histomorphological characteristics of plaque erosion, plaque rupture, and a stable plaque.
Figure 2: Multiple plaque erosions in three major coronary arteries.
Figure 3: Management of acute coronary syndrome with intact fibrous cap.
Figure 4: Combined intravascular imaging in a patient with suspected SCAD.

Similar content being viewed by others

References

  1. Naghavi, M. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108, 1772–1778 (2003).

    Article  PubMed  Google Scholar 

  2. Jia, H. et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol. 62, 1748–1758 (2013).

    Article  PubMed  Google Scholar 

  3. Shmilovich, H. et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis 219, 588–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kato, K. et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study. Circ. Cardiovasc. Imaging 5, 433–440 (2012).

    Article  PubMed  Google Scholar 

  5. Suh, W. M., Seto, A. H., Margey, R. J., Cruz-Gonzalez, I. & Jang, I. K. Intravascular detection of the vulnerable plaque. Circ. Cardiovasc. Imaging 4, 169–178 (2011).

    Article  PubMed  Google Scholar 

  6. Vancraeynest, D., Pasquet, A., Roelants, V., Gerber, B. L. & Vanoverschelde, J. L. Imaging the vulnerable plaque. J. Am. Coll. Cardiol. 57, 1961–1979 (2011).

    Article  PubMed  Google Scholar 

  7. Goldstein, J. A. et al. Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ. Cardiovasc. Interv. 4, 429–437 (2011).

    Article  PubMed  Google Scholar 

  8. Ozaki, Y. et al. Thin-cap fibroatheroma as high-risk plaque for microvascular obstruction in patients with acute coronary syndrome. Circ. Cardiovasc. Imaging 4, 620–627 (2011).

    Article  PubMed  Google Scholar 

  9. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Davies, M. J. The pathophysiology of acute coronary syndromes. Heart 83, 361–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Falk, E., Nakano, M., Bentzon, J. F., Finn, A. V. & Virmani, R. Update on acute coronary syndromes: the pathologists' view. Eur. Heart J. 34, 719–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Farb, A. et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93, 1354–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Prati, F. et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Heart J. 33, 2513–2520 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Prati, F. et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 31, 401–415 (2010).

    Article  PubMed  Google Scholar 

  17. Arbustini, E. et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82, 269–272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stary, H. C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92, 1355–1374 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Stary, H. C. et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89, 2462–2478 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Stary, H. C. Composition and classification of human atherosclerotic lesions. Virchows Arch. A Pathol. Anat. Histopathol. 421, 277–290 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Stary, H. C. et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85, 391–405 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Stary, H. C. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler. Thromb. Vasc. Biol. 20, 1177–1178 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. van der Wal, A. C., Becker, A. E., van der Loos, C. M. & Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89, 36–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Burke, A. P. et al. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97, 2110–2116 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Virmani, R., Burke, A. P. & Farb, A. Plaque rupture and plaque erosion. Thromb. Haemost. 82 (Suppl. 1), 1–3 (1999).

    PubMed  Google Scholar 

  26. Henriques de Gouveia, R., van der Wal, A. C., van der Loos, C. M. & Becker, A. E. Sudden unexpected death in young adults. Discrepancies between initiation of acute plaque complications and the onset of acute coronary death. Eur. Heart J. 23, 1433–1440 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Burke, A. P. et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336, 1276–1282 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Prati, F. et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc. Imaging 6, 283–287 (2013).

    Article  PubMed  Google Scholar 

  29. Ozaki, Y. et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur. Heart J. 32, 2814–2823 (2011).

    Article  PubMed  Google Scholar 

  30. Yahagi, K. et al. Multiple simultaneous plaque erosion in 3 coronary arteries. JACC Cardiovasc. Imaging 7, 1172–1174 (2014).

    Article  PubMed  Google Scholar 

  31. Shin, E. et al. OCT-verified morphological characteristics of atherosclerotic plaques coronary artery spasm sites in vasospastic angina. JACC Cardiovasc. Imaging 8, 1059–1067 (2015).

    Article  PubMed  Google Scholar 

  32. Ohayon, J. et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 295, H717–H727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motoyama, S. et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J. Am. Coll. Cardiol. 66, 337–346 (2015).

    Article  PubMed  Google Scholar 

  34. Motoyama, S. et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J. Am. Coll. Cardiol. 54, 49–57 (2009).

    Article  PubMed  Google Scholar 

  35. Narula, J. & Achenbach, S. Napkin-ring necrotic cores: defining circumferential extent of necrotic cores in unstable plaques. JACC Cardiovasc. Imaging 2, 1436–1438 (2009).

    Article  PubMed  Google Scholar 

  36. Kodama, T., Kondo, T., Oida, A., Fujimoto, S. & Narula, J. Computed tomographic angiography-verified plaque characteristics and slow-flow phenomenon during percutaneous coronary intervention. JACC Cardiovasc. Interv. 5, 636–643 (2012).

    Article  PubMed  Google Scholar 

  37. Yamagishi, M. et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J. Am. Coll. Cardiol. 35, 106–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Maehara, A., Mintz, G. S. & Weissman, N. J. Advances in intravascular imaging. Circ. Cardiovasc. Interv. 2, 482–490 (2009).

    Article  PubMed  Google Scholar 

  39. Guagliumi, G. et al. Mechanisms of atherothrombosis and vascular response to primary percutaneous coronary intervention in women versus men with acute myocardial infarction: results of the OCTAVIA study. JACC Cardiovasc. Interv. 7, 958–968 (2014).

    Article  PubMed  Google Scholar 

  40. Saia, F. et al. Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC Cardiovasc. Imaging 8, 566–575 (2015).

    Article  PubMed  Google Scholar 

  41. Tearney, G. J. et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012).

    Article  PubMed  Google Scholar 

  42. Mozaffarian, D. et al. Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed  Google Scholar 

  43. McManus, D. D. et al. Recent trends in the incidence, treatment, and outcomes of patients with STEMI and NSTEMI. Am. J. Med. 124, 40–47 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Niccoli, G. et al. Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv029 (2015).

  45. Braunwald, E. Coronary plaque erosion: recognition and management. JACC Cardiovasc. Imaging 6, 288–289 (2013).

    Article  PubMed  Google Scholar 

  46. Alfonso, F. Spontaneous coronary artery dissection: new insights from the tip of the iceberg? Circulation 126, 667–670 (2012).

    Article  PubMed  Google Scholar 

  47. Baumgart, D. et al. Acute plaque rupture and myocardial stunning in patient with normal coronary arteriography. Lancet 346, 193–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Yip, A. & Saw, J. Spontaneous coronary artery dissection-A review. Cardiovasc. Diagn. Ther. 5, 37–48 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Goel, K. et al. Familial spontaneous coronary artery dissection: evidence for genetic susceptibility. JAMA Intern. Med. 175, 821–826 (2015).

    Article  PubMed  Google Scholar 

  50. Tweet, M. S. et al. Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation 126, 579–588 (2012).

    Article  PubMed  Google Scholar 

  51. Maehara, A. et al. Incidence, morphology, angiographic findings, and outcomes of intramural hematomas after percutaneous coronary interventions: an intravascular ultrasound study. Circulation 105, 2037–2042 (2002).

    Article  PubMed  Google Scholar 

  52. Saw, J. Coronary angiogram classification of spontaneous coronary artery dissection. Catheter. Cardiovasc. Interv. 84, 1115–1122 (2014).

    Article  PubMed  Google Scholar 

  53. Eleid, M. F. et al. Coronary artery tortuosity in spontaneous coronary artery dissection: angiographic characteristics and clinical implications. Circ. Cardiovasc. Interv. 7, 656–662 (2014).

    Article  PubMed  Google Scholar 

  54. Alfonso, F., Paulo, M., Lennie, V., Das-Neves, B. & Echavarria-Pinto, M. Fibromuscular dysplasia and spontaneous coronary artery dissection: coincidental association or causality? JACC Cardiovasc. Interv. 6, 638 (2013).

    Article  PubMed  Google Scholar 

  55. Saw, J. Spontaneous coronary artery dissection. Can. J. Cardiol. 29, 1027–1033 (2013).

    Article  PubMed  Google Scholar 

  56. Saw, J., Ricci, D., Starovoytov, A., Fox, R. & Buller, C. E. Spontaneous coronary artery dissection: prevalence of predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. JACC Cardiovasc. Interv. 6, 44–52 (2013).

    Article  PubMed  Google Scholar 

  57. Saw, J. et al. Spontaneous coronary artery dissection in patients with fibromuscular dysplasia: a case series. Circ. Cardiovasc. Interv. 5, 134–137 (2012).

    Article  PubMed  Google Scholar 

  58. Alfonso, F. et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J. Am. Coll. Cardiol. 59, 1073–1079 (2012).

    Article  PubMed  Google Scholar 

  59. Maehara, A. et al. Intravascular ultrasound assessment of spontaneous coronary artery dissection. Am. J. Cardiol. 89, 466–468 (2002).

    Article  PubMed  Google Scholar 

  60. Giacoppo, D., Capodanno, D., Dangas, G. & Tamburino, C. Spontaneous coronary artery dissection. Int. J. Cardiol. 175, 8–20 (2014).

    Article  PubMed  Google Scholar 

  61. Paulo, M. et al. Combined use of OCT and IVUS in spontaneous coronary artery dissection. JACC Cardiovasc. Imaging 6, 830–832 (2013).

    Article  PubMed  Google Scholar 

  62. Erbel, R. et al. Intravascular ultrasound classification of atherosclerotic lesions according to American Heart Association recommendation. Coron. Artery Dis. 10, 489–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Arnold, J. R., West, N. E., van Gaal, W. J., Karamitsos, T. D. & Banning, A. P. The role of intravascular ultrasound in the management of spontaneous coronary artery dissection. Cardiovasc. Ultrasound 6, 24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nishiguchi, T. et al. Prevalence of spontaneous coronary artery dissection in patients with acute coronary syndrome. Eur. Heart J. Acute Cardiovasc. Care http://dx.doi.org/10.1177/2048872613504310 (2013).

  65. Sun, H. et al. Coronary microvascular spasm causes myocardial ischemia in patients with vasospastic angina. J. Am. Coll. Cardiol. 39, 847–851 (2002).

    Article  PubMed  Google Scholar 

  66. Hibino, H. & Kurachi, Y. A new insight into the pathogenesis of coronary vasospasm. Circ. Res. 98, 579–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Beltrame, J. F., Sasayama, S. & Maseri, A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J. Am. Coll. Cardiol. 33, 1442–1452 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Hung, M. J., Hu, P. & Hung, M. Y. Coronary artery spasm: review and update. Int. J. Med. Sci. 11, 1161–1171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bertrand, M. E. et al. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation 65, 1299–1306 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Radico, F., Cicchitti, V., Zimarino, M. & De Caterina, R. Angina pectoris and myocardial ischemia in the absence of obstructive coronary artery disease: practical considerations for diagnostic tests. JACC Cardiovasc. Interv. 7, 453–463 (2014).

    Article  PubMed  Google Scholar 

  71. Ong, P. et al. Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients With Acute Coronary Syndrome) Study. J. Am. Coll. Cardiol. 52, 523–527 (2008).

    Article  PubMed  Google Scholar 

  72. Nakayama, N. et al. Clinical features and prognosis of patients with coronary spasm-induced non-ST-segment elevation acute coronary syndrome. J. Am. Heart Assoc. 3, e000795 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nakagawa, H. et al. Coronary spasm preferentially occurs at branch points: an angiographic comparison with atherosclerotic plaque. Circ. Cardiovasc. Interv. 2, 97–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Ong, P. et al. Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 129, 1723–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Suwaidi, J. A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101, 948–954 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Hong, Y. J. et al. Plaque components at coronary sites with focal spasm in patients with variant angina: virtual histology-intravascular ultrasound analysis. Int. J. Cardiol. 144, 367–372 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.N. and S.S.K. substantially contributed to discussion of content, wrote, and reviewed and edited the manuscript before submission. G.W.S., M.S., R.V., and T.A. substantially contributed to discussion of content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jagat Narula.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, S., Stone, G., Singh, M. et al. Acute coronary syndromes without coronary plaque rupture. Nat Rev Cardiol 13, 257–265 (2016). https://doi.org/10.1038/nrcardio.2016.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing