Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Noninvasive cardiac imaging in suspected acute coronary syndrome

Key Points

  • Cardiac imaging can complement history, electrocardiogram, and cardiac biomarkers for timely identification or ruling out of acute coronary syndrome (ACS)

  • Bedside echocardiography is the first-line imaging test in patients with suspected ACS

  • Advanced imaging techniques (stress echocardiography, computed tomography coronary angiography, myocardial perfusion scintigraphy, and cardiovascular magnetic resonance) add diagnostic and prognostic value in patients with suspected ACS

  • Novel radionuclides, such as β-methyl-p-[123I] iodophenylpentadecanoic acid, enable imaging of metabolic disturbances in glucose metabolism that result from myocardial ischaemia (which can last >12 h), thereby allowing late detection of ischaemia

  • Multiparametric tissue characterization on cardiovascular magnetic resonance enables the detection and quantification of myocardial infarction and oedema in ischaemic injury, which can be detected early after an ischaemic insult

Abstract

Noninvasive cardiac imaging has an important role in the assessment of patients with acute-onset chest pain. In patients with suspected acute coronary syndrome (ACS), cardiac imaging offers incremental value over routine clinical assessment, the electrocardiogram, and blood biomarkers of myocardial injury, to confirm or refute the diagnosis of coronary artery disease and to assess future cardiovascular risk. This Review covers the current guidelines and clinical use of the common noninvasive imaging techniques, including echocardiography and stress echocardiography, computed tomography coronary angiography, myocardial perfusion scintigraphy, positron emission tomography, and cardiovascular magnetic resonance imaging, in patients with suspected ACS, and provides an update on the developments in noninvasive imaging techniques in the past 5 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for the management of patients with suspected acute coronary syndrome (ACS).
Figure 2: Transthoracic echocardiography in a patient with suspected acute coronary syndrome.
Figure 3: Timeline of pathophysiological changes in ischaemic myocardium and imaging techniques used to study the associated changes.
Figure 4: Imaging in patients with suspected acute coronary syndrome.
Figure 5: Multiparametric cardiovascular magnetic resonance imaging in a patient with suspected acute coronary syndrome.

Similar content being viewed by others

References

  1. Goodacre, S. The health care burden of acute chest pain. Heart 91, 229–230 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Knockaert, D. C., Buntinx, F., Stoens, N., Bruyninckx, R. & Delooz, H. Chest pain in the emergency department: the broad spectrum of causes. Eur. J. Emerg. Med. 9, 25–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Ekelund, U., Nilsson, H.-J., Frigyesi, A. & Torffvit, O. Patients with suspected acute coronary syndrome in a university hospital emergency department: an observational study. BMC Emerg. Med. 2, 1 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goodacre, S. W. et al. The Randomised Assessment of Treatment using Panel Assay of Cardiac Markers (RATPAC) trial: a randomised controlled trial of point-of-care cardiac markers in the emergency department. Heart 97, 190–196 (2011).

    Article  PubMed  Google Scholar 

  5. Solinas, L. et al. Prevalence, clinical characteristics, resource utilization and outcome of patients with acute chest pain in the emergency department. A multicenter, prospective, observational study in north-eastern Italy. Ital. Heart J. 4, 318–324 (2003).

    PubMed  Google Scholar 

  6. Pope, J. H. et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N. Engl. J. Med. 342, 1163–1170 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Di Pasquale, P. et al. Sensitivity, specificity and predictive value of the echocardiography and troponin-T test combination in patients with non-ST elevation acute coronary syndromes. Int. J. Cardiovasc. Imaging 20, 37–46 (2004).

    Article  PubMed  Google Scholar 

  8. Hammarsten, O. et al. Troponin T percentiles from a random population sample, emergency room patients and patients with myocardial infarction. Clin. Chem. 58, 628–637 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Gami, B. N. et al. Utility of heart-type fatty acid binding protein as a new biochemical marker for the early diagnosis of acute coronary syndrome. J. Clin. Diagn. Res. 9, BC22–BC24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thygesen, K. et al. Third universal definition of myocardial infarction. Eur. Heart J. 33, 2551–2567 (2012).

    Article  PubMed  Google Scholar 

  11. O'Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Article  PubMed  Google Scholar 

  12. Hamm, C. W. et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation. Eur. Heart J. 32, 2999–3054 (2011).

    Article  PubMed  Google Scholar 

  13. Steg, P. G. et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 33, 2569–2619 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Douglas, P. S. et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. J. Am. Coll. Cardiol. 57, 1126–1166 (2011).

    Article  PubMed  Google Scholar 

  15. Horowitz, R. S. et al. Immediate diagnosis of acute myocardial infarction by two-dimensional echocardiography. Circulation 65, 323–329 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki, H., Charuzi, Y., Beeder, C., Sugiki, Y. & Lew, A. S. Utility of echocardiography for the early assessment of patients with nondiagnostic chest pain. Am. Heart J. 112, 494–497 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Peels, C. H., Visser, C. A., Kupper, A. J., Visser, F. C. & Roos, J. P. Usefulness of two-dimensional echocardiography for immediate detection of myocardial ischemia in the emergency room. Am. J. Cardiol. 65, 687–691 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Sabia, P. et al. Value of regional wall motion abnormality in the emergency room diagnosis of acute myocardial infarction. A prospective study using two-dimensional echocardiography. Circulation 84, I85–92 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Saeian, K., Rhyne, T. L. & Sagar, K. B. Ultrasonic tissue characterization for diagnosis of acute myocardial infarction in the coronary care unit. Am. J. Cardiol. 74, 1211–1215 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Kontos, M. C. et al. Comparison between 2-dimensional echocardiography and myocardial perfusion imaging in the emergency department in patients with possible myocardial ischemia. Am. Heart J. 136, 724–733 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Kontos, M. C., Arrowood, J. A., Paulsen, W. H. & Nixon, J. V. Early echocardiography can predict cardiac events in emergency department patients with chest pain. Ann. Emerg. Med. 31, 550–557 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mohler, E. R. et al. Clinical utility of troponin T levels and echocardiography in the emergency department. Am. Heart J. 135, 253–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kalvaitis, S. et al. Effect of time delay on the diagnostic use of contrast echocardiography in patients presenting to the emergency department with chest pain and no S-T segment elevation. J. Am. Soc. Echocardiogr. 19, 1488–1493 (2006).

    Article  PubMed  Google Scholar 

  24. Senior, R. et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur. J. Echocardiogr. 10, 194–212 (2008).

    Article  Google Scholar 

  25. Lyseggen, E. et al. Myocardial strain analysis in acute coronary occlusion: a tool to assess myocardial viability and reperfusion. Circulation 112, 3901–3910 (2005).

    Article  PubMed  Google Scholar 

  26. Smedsrud, M. K. et al. Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease. J. Am. Coll. Cardiol. 60, 1086–1093 (2012).

    Article  PubMed  Google Scholar 

  27. Dahlslett, T. et al. Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. J. Am. Soc. Echocardiogr. 27, 512–519 (2014).

    Article  PubMed  Google Scholar 

  28. Choi, S. W. et al. Diagnostic value of ultrasound-based strain imaging in patients with suspected coronary artery disease. Korean Circ. J. 38, 398 (2008).

    Article  Google Scholar 

  29. Sarvari, S. I. et al. Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc. Imaging 6, 535–544 (2013).

    Article  PubMed  Google Scholar 

  30. Zahid, W. et al. Early systolic lengthening may identify minimal myocardial damage in patients with non-ST-elevation acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging 15, 1152–1160 (2014).

    Article  PubMed  Google Scholar 

  31. Anantharam, B. et al. Safety of contrast in stress echocardiography in stable patients and in patients with suspected acute coronary syndrome but negative 12-hour troponin. Am. J. Cardiol. 104, 14–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Korosoglou, G. et al. Usefulness of real-time myocardial perfusion imaging in the evaluation of patients with first time chest pain. Am. J. Cardiol. 94, 1225–1231 (2004).

    Article  PubMed  Google Scholar 

  33. Tong, K. L. et al. Myocardial contrast echocardiography versus Thrombolysis In Myocardial Infarction score in patients presenting to the emergency department with chest pain and a nondiagnostic electrocardiogram. J. Am. Coll. Cardiol. 46, 920–927 (2005).

    Article  PubMed  Google Scholar 

  34. Rinkevich, D. et al. Regional left ventricular perfusion and function in patients presenting to the emergency department with chest pain and no ST-segment elevation. Eur. Heart J. 26, 1606–1611 (2005).

    Article  PubMed  Google Scholar 

  35. Wyrick, J. J. et al. Cost-efficiency of myocardial contrast echocardiography in patients presenting to the emergency department with chest pain of suspected cardiac origin and a nondiagnostic electrocardiogram. Am. J. Cardiol. 102, 649–652 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Villanueva, F. S. et al. Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115, 345–352 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsutsui, J. M. et al. Diagnostic accuracy and prognostic value of dobutamine stress myocardial contrast echocardiography in patients with suspected acute coronary syndromes. Echocardiography 22, 487–495 (2005).

    Article  PubMed  Google Scholar 

  38. Conti, A. et al. Assessment of patients with low-risk chest pain in the emergency department: head-to-head comparison of exercise stress echocardiography and exercise myocardial SPECT. Am. Heart J. 149, 894–901 (2005).

    Article  PubMed  Google Scholar 

  39. Jeetley, P., Burden, L., Stoykova, B. & Senior, R. Clinical and economic impact of stress echocardiography compared with exercise electrocardiography in patients with suspected acute coronary syndrome but negative troponin: a prospective randomized controlled study. Eur. Heart J. 28, 204–211 (2007).

    Article  PubMed  Google Scholar 

  40. Gaibazzi, N. et al. Contrast stress-echocardiography predicts cardiac events in patients with suspected acute coronary syndrome but nondiagnostic electrocardiogram and normal 12-hour troponin. J. Am. Soc. Echocardiogr. 24, 1333–1341 (2011).

    Article  PubMed  Google Scholar 

  41. Shah, B. N. et al. Incremental diagnostic and prognostic value of contemporary stress echocardiography in a chest pain unit: mortality and morbidity outcomes from a real-world setting. Circ. Cardiovasc. Imaging 6, 202–209 (2013).

    Article  PubMed  Google Scholar 

  42. Bholasingh, R. et al. Prognostic value of predischarge dobutamine stress echocardiography in chest pain patients with a negative cardiac troponin T. J. Am. Coll. Cardiol. 41, 596–602 (2003).

    Article  PubMed  Google Scholar 

  43. Nucifora, G. et al. Comparison of early dobutamine stress echocardiography and exercise electrocardiographic testing for management of patients presenting to the emergency department with chest pain. Am. J. Cardiol. 100, 1068–1073 (2007).

    Article  PubMed  Google Scholar 

  44. Taylor, A. J. et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. J. Am. Coll. Cardiol. 56, 1864–1894 (2010).

    Article  PubMed  Google Scholar 

  45. Hoffmann, U. & Bamberg, F. Is computed tomography coronary angiography the most accurate and effective noninvasive imaging tool to evaluate patients with acute chest pain in the emergency department? Circ. Cardiovasc. Imaging 2, 251–263; discussion 263 (2009).

    Article  PubMed  Google Scholar 

  46. Johnson, T. R. et al. ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR Am. J. Roentgenol. 188, 76–82 (2007).

    Article  PubMed  Google Scholar 

  47. Gallagher, M. J. et al. The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann. Emerg. Med. 49, 125–136 (2007).

    Article  PubMed  Google Scholar 

  48. Rubinshtein, R. et al. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 115, 1762–1768 (2007).

    Article  PubMed  Google Scholar 

  49. Johnson, T. R. C. et al. Dual-source CT for chest pain assessment. Eur. Radiol. 18, 773–780 (2008).

    Article  PubMed  Google Scholar 

  50. Takakuwa, K. M. & Halpern, E. J. Evaluation of a 'triple rule-out' coronary CT angiography protocol: use of 64-Section CT in low-to-moderate risk emergency department patients suspected of having acute coronary syndrome. Radiology 248, 438–446 (2008).

    Article  PubMed  Google Scholar 

  51. Ueno, K. et al. Diagnostic capacity of 64-slice multidetector computed tomography for acute coronary syndrome in patients presenting with acute chest pain. Cardiology 112, 211–218 (2009).

    Article  PubMed  Google Scholar 

  52. Hollander, J. E. et al. Coronary computed tomographic angiography for rapid discharge of low-risk patients with potential acute coronary syndromes. Ann. Emerg. Med. 53, 295–304 (2009).

    Article  PubMed  Google Scholar 

  53. Hoffmann, U. et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J. Am. Coll. Cardiol. 53, 1642–1650 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hansen, M. et al. The value of dual-source 64-slice CT coronary angiography in the assessment of patients presenting to an acute chest pain service. Heart Lung Circ. 19, 213–218 (2010).

    Article  PubMed  Google Scholar 

  55. Takakuwa, K. M., Keith, S. W., Estepa, A. T. & Shofer, F. S. A meta-analysis of 64-section coronary CT angiography findings for predicting 30-day major adverse cardiac events in patients presenting with symptoms suggestive of acute coronary syndrome. Acad. Radiol. 18, 1522–1528 (2011).

    Article  PubMed  Google Scholar 

  56. Goldstein, J. A. et al. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J. Am. Coll. Cardiol. 49, 863–871 (2007).

    Article  PubMed  Google Scholar 

  57. Goldstein, J. A. et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J. Am. Coll. Cardiol. 58, 1414–1422 (2011).

    Article  PubMed  Google Scholar 

  58. Litt, H. I. et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N. Engl. J. Med. 366, 1393–1403 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Hoffmann, U. et al. Coronary CT angiography versus standard evaluation in acute chest pain. N. Engl. J. Med. 367, 299–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hulten, E. et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J. Am. Coll. Cardiol. 61, 880–892 (2013).

    Article  PubMed  Google Scholar 

  61. Nasis, A. et al. Long-term outcome after CT angiography in patients with possible acute coronary syndrome. Radiology 272, 674–682 (2014).

    Article  PubMed  Google Scholar 

  62. Fernandez-Friera, L. et al. Diagnostic value of coronary artery calcium scoring in low-intermediate risk patients evaluated in the emergency department for acute coronary syndrome. Am. J. Cardiol. 107, 17–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Chang, A. M., Le, J., Matsuura, A. C., Litt, H. I. & Hollander, J. E. Does coronary artery calcium scoring add to the predictive value of coronary computed tomography angiography for adverse cardiovascular events in low-risk chest pain patients? Acad. Emerg. Med. 18, 1065–1071 (2011).

    Article  PubMed  Google Scholar 

  64. Mano, Y., Anzai, T., Yoshizawa, A., Itabashi, Y. & Ohki, T. Role of non-electrocardiogram-gated contrast-enhanced computed tomography in the diagnosis of acute coronary syndrome. Heart Vessels 30, 1–8 (2013).

    Article  PubMed  Google Scholar 

  65. Bezerra, H. G. et al. Incremental value of myocardial perfusion over regional left ventricular function and coronary stenosis by cardiac CT for the detection of acute coronary syndromes in high-risk patients: a subgroup analysis of the ROMICAT trial. J. Cardiovasc. Comput. Tomogr. 5, 382–391 (2011).

    Article  PubMed  Google Scholar 

  66. Kontos, M. C. et al. Sensitivity of acute rest myocardial perfusion imaging for identifying patients with myocardial infarction based on a troponin definition. J. Nucl. Cardiol. 11, 12–19 (2004).

    Article  PubMed  Google Scholar 

  67. Zaman, M. M. et al. Correlation between severity of coronary artery stenosis and perfusion defect assessed by SPECT myocardial perfusion imaging. Mymensingh Med. J. 19, 608–613 (2010).

    CAS  PubMed  Google Scholar 

  68. Hendel, R. C. et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging. J. Am. Coll. Cardiol. 53, 2201–2229 (2009).

    Article  PubMed  Google Scholar 

  69. Wackers, F. J. et al. Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N. Engl. J. Med. 295, 1–5 (1976).

    Article  CAS  PubMed  Google Scholar 

  70. Bilodeau, L., Théroux, P., Grégoire, J., Gagnon, D. & Arsenault, A. Technetium-99m sestamibi tomography in patients with spontaneous chest pain: correlations with clinical, electrocardiographic and angiographic findings. J. Am. Coll. Cardiol. 18, 1684–1691 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Varetto, T., Cantalupi, D., Altieri, A. & Orlandi, C. Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J. Am. Coll. Cardiol. 22, 1804–1808 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Hilton, T. C. et al. Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J. Am. Coll. Cardiol. 23, 1016–1022 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Tatum, J. L. et al. Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann. Emerg. Med. 29, 116–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Kontos, M. C., Jesse, R. L., Schmidt, K. L., Ornato, J. P. & Tatum, J. L. Value of acute rest sestamibi perfusion imaging for evaluation of patients admitted to the emergency department with chest pain. J. Am. Coll. Cardiol. 30, 976–982 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Heller, G. V. et al. Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J. Am. Coll. Cardiol. 31, 1011–1017 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Duca, M. D. et al. Comparison of acute rest myocardial perfusion imaging and serum markers of myocardial injury in patients with chest pain syndromes. J. Nucl. Cardiol. 6, 570–576 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Kosnik, J. W. et al. Resting sestamibi imaging for the prognosis of low-risk chest pain. Acad. Emerg. Med. 6, 998–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Sechtem, U., Achenbach, S., Friedrich, M., Wackers, F. & Zamorano, J. L. Non-invasive imaging in acute chest pain syndromes. Eur. Heart J. Cardiovasc. Imaging 13, 69–78 (2012).

    Article  PubMed  Google Scholar 

  79. Udelson, J. E. & Spiegler, E. J. Emergency department perfusion imaging for suspected coronary artery disease: the ERASE Chest Pain Trial. Md Med. (Suppl.), 90–94 (2001).

  80. Udelson, J. E. et al. Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia. JAMA 288, 2693 (2002).

    Article  PubMed  Google Scholar 

  81. Stowers, S. A. et al. An economic analysis of an aggressive diagnostic strategy with single photon emission computed tomography myocardial perfusion imaging and early exercise stress testing in emergency department patients who present with chest pain but nondiagnostic electro. Ann. Emerg. Med. 35, 17–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Radensky, P. W., Hilton, T. C., Fulmer, H., McLaughlin, B. A. & Stowers, S. A. Potential cost effectiveness of initial myocardial perfusion imaging for assessment of emergency department patients with chest pain. Am. J. Cardiol. 79, 595–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Forberg, J. L. et al. Negative predictive value and potential cost savings of acute nuclear myocardial perfusion imaging in low risk patients with suspected acute coronary syndrome: a prospective single blinded study. BMC Emerg. Med. 9, 12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fram, D. B. et al. Duration of abnormal SPECT myocardial perfusion imaging following resolution of acute ischemia: an angioplasty model. J. Am. Coll. Cardiol. 41, 452–459 (2003).

    Article  PubMed  Google Scholar 

  85. Harrison, S. D., Harrison, M. A. & Duvall, W. L. Stress myocardial perfusion imaging in the emergency department — new techniques for speed and diagnostic accuracy. Curr. Cardiol. Rev. 8, 116–122 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nerenberg, R. H., Shofer, F. S., Robey, J. L., Brown, A. M. & Hollander, J. E. Impact of a negative prior stress test on emergency physician disposition decision in ED patients with chest pain syndromes. Am. J. Emerg. Med. 25, 39–44 (2007).

    Article  PubMed  Google Scholar 

  87. Shoyeb, A. et al. Value of definitive diagnostic testing in the evaluation of patients presenting to the emergency department with chest pain. Am. J. Cardiol. 91, 1410–1414 (2003).

    Article  PubMed  Google Scholar 

  88. Fesmire, F. M. et al. The Erlanger chest pain evaluation protocol: a one-year experience with serial 12-lead ECG monitoring, two-hour delta serum marker measurements, and selective nuclear stress testing to identify and exclude acute coronary syndromes. Ann. Emerg. Med. 40, 584–594 (2002).

    Article  PubMed  Google Scholar 

  89. Duvall, W. L. et al. Stress-only Tc-99m myocardial perfusion imaging in an emergency department chest pain unit. J. Emerg. Med. 42, 642–650 (2012).

    Article  PubMed  Google Scholar 

  90. Depre, C., Vanoverschelde, J.-L. J. & Taegtmeyer, H. Glucose for the heart. Circulation 99, 578–588 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Yoshinaga, K., Naya, M., Shiga, T., Suzuki, E. & Tamaki, N. Ischaemic memory imaging using metabolic radiopharmaceuticals: overview of clinical settings and ongoing investigations. Eur. J. Nucl. Med. Mol. Imaging 41, 384–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Inaba, Y. & Bergmann, S. R. Prognostic value of myocardial metabolic imaging with BMIPP in the spectrum of coronary artery disease: a systematic review. J. Nucl. Cardiol. 17, 61–70 (2010).

    Article  PubMed  Google Scholar 

  93. Kontos, M. C. et al. Iodofiltic acid I 123 (BMIPP) fatty acid imaging improves initial diagnosis in emergency department patients with suspected acute coronary syndromes: a multicenter trial. J. Am. Coll. Cardiol. 56, 290–299 (2010).

    Article  PubMed  Google Scholar 

  94. Li, Y., Zhang, W., Wu, H. & Liu, G. Advanced tracers in PET imaging of cardiovascular disease. Biomed. Res. Int. 2014, 504532 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Gaemperli, O., Bengel, F. M. & Kaufmann, P. A. Cardiac hybrid imaging. Eur. Heart J. 32, 2100–2108 (2011).

    Article  PubMed  Google Scholar 

  96. Namdar, M. et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J. Nucl. Med. 46, 930–935 (2005).

    PubMed  Google Scholar 

  97. Groves, A. M. et al. First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur. J. Nucl. Med. Mol. Imaging 36, 2027–2033 (2009).

    Article  PubMed  Google Scholar 

  98. Kajander, S. et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122, 603–613 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Rispler, S. et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J. Am. Coll. Cardiol. 49, 1059–1067 (2007).

    Article  PubMed  Google Scholar 

  100. Sato, A. et al. Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J. Nucl. Cardiol. 17, 19–26 (2010).

    Article  PubMed  Google Scholar 

  101. Schaap, J. et al. Incremental diagnostic accuracy of hybrid SPECT/CT coronary angiography in a population with an intermediate to high pre-test likelihood of coronary artery disease. Eur. Heart J. Cardiovasc. Imaging 14, 642–649 (2013).

    Article  PubMed  Google Scholar 

  102. Lockie, T., Nagel, E., Redwood, S. & Plein, S. Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Circulation 119, 1671–1681 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hendel, R. C. et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J. Am. Coll. Cardiol. 48, 1475–1497 (2006).

    Article  PubMed  Google Scholar 

  104. Plein, S. et al. Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J. Am. Coll. Cardiol. 44, 2173–2181 (2004).

    Article  PubMed  Google Scholar 

  105. Kwong, R. Y. et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 107, 531–537 (2003).

    Article  PubMed  Google Scholar 

  106. Abdel-Aty, H., Cocker, M., Meek, C., Tyberg, J. V. & Friedrich, M. G. Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J. Am. Coll. Cardiol. 53, 1194–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. h-Ici, D. O. et al. T1 mapping in ischaemic heart disease. Eur. Heart J. Cardiovasc. Imaging 15, 597–602 (2014).

    Article  PubMed  Google Scholar 

  108. Fishbein, M. C., Maclean, D. & Maroko, P. R. The histopathologic evolution of myocardial infarction. Chest 73, 843–849 (1978).

    Article  CAS  PubMed  Google Scholar 

  109. Cury, R. C. et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118, 837–844 (2008).

    Article  PubMed  Google Scholar 

  110. Ingkanisorn, W. P. et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J. Am. Coll. Cardiol. 47, 1427–1432 (2006).

    Article  PubMed  Google Scholar 

  111. Lerakis, S. et al. Prognostic value of adenosine stress cardiovascular magnetic resonance in patients with low-risk chest pain. J. Cardiovasc. Magn. Reson. 11, 37 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hartlage, G. et al. Prognostic value of adenosine stress cardiovascular magnetic resonance and dobutamine stress echocardiography in patients with low-risk chest pain. Int. J. Cardiovascular Imaging 28, 803–812 (2012).

    Article  Google Scholar 

  113. Miller, C. D. et al. Stress CMR imaging observation unit in the emergency department reduces 1-year medical care costs in patients with acute chest pain: a randomized study for comparison with inpatient care. JACC Cardiovasc. Imaging 4, 862–870 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Messroghli, D. R. et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn. Reson. Med. 58, 34–40 (2007).

    Article  PubMed  Google Scholar 

  115. Dall'Armellina, E. et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J. Cardiovasc. Magn. Reson. 14, 15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ferreira, V. M. et al. T1 mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc. Imaging 6, 1048–1058 (2013).

    Article  PubMed  Google Scholar 

  117. Garg, P., Greenwood, J. P. & Plein, S. Multiparametric relaxometry by cardiac magnetic resonance imaging in Takotsubo cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 16, 1174 (2015).

    Article  PubMed  Google Scholar 

  118. Foy, A. J., Liu, G., Davidson, W. R., Sciamanna, C. & Leslie, D. L. Comparative effectiveness of diagnostic testing strategies in emergency department patients with chest pain: an analysis of downstream testing, interventions, and outcomes. JAMA Intern. Med. 175, 428–436 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.G. researched data for the article and wrote the manuscript. P.G., S.R.U., R.S., J.P.G., and S.P. reviewed and edited the manuscript before submission. P.G. and S.P. provided substantial contribution to the discussion of content.

Corresponding author

Correspondence to Sven Plein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, P., Underwood, S., Senior, R. et al. Noninvasive cardiac imaging in suspected acute coronary syndrome. Nat Rev Cardiol 13, 266–275 (2016). https://doi.org/10.1038/nrcardio.2016.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing