Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atrial fibrillation in women: treatment

Key Points

  • Evaluation of sex-specific differences, disparity, and bias in health-care utilization requires presence of adverse outcomes and investigation into treatment eligibility, contraindications to treatment, patient preferences, and confounding owing to patient characteristics

  • Women are less likely to undergo rhythm-control treatment than men; among individuals undergoing rhythm-control treatment, women are less likely to receive electrical cardioversion and catheter ablation than men

  • No significant differences exist in the use of oral anticoagulants between women and men; however, among individuals receiving dabigatran, women are more likely to receive the lower dose than men

  • Warfarin and non-vitamin K antagonist oral anticoagulants (NOACs) have similar efficacy in women and men; however, among individuals receiving warfarin, women might have higher residual risk of stroke or systemic embolism

  • Warfarin and NOACs have similar bleeding risks in women and men

  • Future studies need to examine patient, provider, and health-system factors to address whether disparities or bias contribute to sex-specific differences in utilization and outcomes of treatments for atrial fibrillation

Abstract

Sex-specific differences in the epidemiology, pathophysiology, presentation, prognosis, and treatment of atrial fibrillation (AF) are increasingly recognized. Women with AF generally experience worse symptoms, poorer quality of life, and have higher risk of stroke and death than men with AF. Effective treatment of the arrhythmia in women is critical to reduce the rate of adverse events. We review the current evidence on sex-specific differences in the utilization and outcomes of treatments for AF, including rate-control and rhythm-control strategies, and stroke-prevention therapy. In addition, we provide a critical evaluation of potential disparities and biases in health-care use that might be associated with differences in the outcomes between women and men. We underscore current knowledge gaps that need to be addressed in future studies to improve the management of AF in women. In particular, we suggest several strategies to produce high-quality evidence from randomized clinical trials for women with AF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of treatment of atrial fibrillation in women compared with in men.
Figure 2: Three-tiered framework for sex-specific analysis of observational studies.
Figure 3: Participation of women in anticoagulation trials for stroke prevention in atrial fibrillation.

Similar content being viewed by others

References

  1. Ko, D. et al. Atrial fibrillation in women: epidemiology, pathophysiology, presentation, and prognosis. Nat. Rev. Cardiol. 13, 321–332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014).

    PubMed  Google Scholar 

  3. Emdin, C. A. et al. Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: systematic review and meta-analysis of cohort studies. BMJ 532, h7013 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Marini, C. et al. Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke 36, 1115–1119 (2005).

    Article  PubMed  Google Scholar 

  5. Wolf, P. A., Abbott, R. D. & Kannel, W. B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22, 983–988 (1991).

    PubMed  CAS  Google Scholar 

  6. Lin, H. J. et al. Stroke severity in atrial fibrillation. The Framingham Study. Stroke 27, 1760–1764 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. Hylek, E. M. et al. Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation. N. Engl. J. Med. 349, 1019–1026 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Fonarow, G. C. et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke. Circulation 121, 879–891 (2010).

    Article  PubMed  Google Scholar 

  9. Bushnell, C. et al. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 1545–1588 (2014).

    Article  PubMed  Google Scholar 

  10. Avgil Tsadok, M. et al. Sex differences in stroke risk among older patients with recently diagnosed atrial fibrillation. JAMA 307, 1952–1958 (2012).

    Article  PubMed  Google Scholar 

  11. Fang, M. C. et al. Gender differences in the risk of ischemic stroke and peripheral embolism in atrial fibrillation: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. Circulation 112, 1687–1691 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ball, J., Carrington, M. J., Wood, K. A. & Stewart, S. Women versus men with chronic atrial fibrillation: insights from the Standard versus Atrial Fibrillation Specific Management Study (SAFETY). PLoS ONE 8, e65795 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nezu, T. et al. Greater severity of neurological defects in women admitted with atrial fibrillation-related stroke. Circ. J. 80, 250–255 (2016).

    Article  PubMed  Google Scholar 

  14. Lucas, F. L., DeLorenzo, M. A., Siewers, A. E. & Wennberg, D. E. Temporal trends in the utilization of diagnostic testing and treatments for cardiovascular disease in the United States, 1993–2001. Circulation 113, 374–379 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kim, L. K. et al. Sex-based disparities in incidence, treatment, and outcomes of cardiac arrest in the United States, 2003–2012. J. Am. Heart Assoc. 5, e003704 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Schulman, K. A. et al. The effect of race and sex on physicians' recommendations for cardiac catheterization. N. Engl. J. Med. 340, 618–626 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. Rathore, S. S. & Krumholz, H. M. Differences, disparities, and biases: clarifying racial variations in health care use. Ann. Intern. Med. 141, 635–638 (2004).

    Article  PubMed  Google Scholar 

  18. Rothwell, P. M. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet 365, 82–93 (2005).

    Article  PubMed  Google Scholar 

  19. White, A. A. III & Stubblefield-Tave, B. Some advice for physicians and other clinicians treating minorities, women, and other patients at risk of receiving health care disparities. J. Racial Ethn. Health Disparities http://dx.doi.org/10.1007/s40615-016-0248-6 (2016).

  20. Borkhoff, C. M., Hawker, G. A. & Wright, J. G. Patient gender affects the referral and recommendation for total joint arthroplasty. Clin. Orthop. Relat. Res. 469, 1829–1837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J. & Handelsman, J. Science faculty's subtle gender biases favor male students. Proc. Natl Acad. Sci. USA 109, 16474–16479 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Handley, I. M., Brown, E. R., Moss-Racusin, C. A. & Smith, J. L. Quality of evidence revealing subtle gender biases in science is in the eye of the beholder. Proc. Natl Acad. Sci. USA 112, 13201–13206 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Girod, S. et al. Reducing implicit gender leadership bias in academic medicine with an educational intervention. Acad. Med. 91, 1143–1150 (2016).

    Article  PubMed  Google Scholar 

  24. Melloni, C. et al. Representation of women in randomized clinical trials of cardiovascular disease prevention. Circ. Cardiovasc. Qual. Outcomes 3, 135–142 (2010).

    Article  PubMed  Google Scholar 

  25. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130, e199–e267 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Camm, A. J. et al. 2012 focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur. Heart J. 33, 2719–2747 (2012).

    Article  PubMed  Google Scholar 

  27. Wyse, D. G. et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N. Engl. J. Med. 347, 1825–1833 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Van Gelder, I. C. et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N. Engl. J. Med. 347, 1834–1840 (2002).

    Article  PubMed  Google Scholar 

  29. Hohnloser, S. H., Kuck, K. H. & Lilienthal, J. Rhythm or rate control in atrial fibrillation — Pharmacological Intervention in Atrial Fibrillation (PIAF): a randomised trial. Lancet 356, 1789–1794 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. Carlsson, J. et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J. Am. Coll. Cardiol. 41, 1690–1696 (2003).

    Article  PubMed  Google Scholar 

  31. Dagres, N. et al. Gender-related differences in presentation, treatment, and outcome of patients with atrial fibrillation in Europe: a report from the Euro Heart Survey on atrial fibrillation. J. Am. Coll. Cardiol. 49, 572–577 (2007).

    Article  PubMed  Google Scholar 

  32. Lip, G. Y. et al. Sex-related differences in presentation, treatment, and outcome of patients with atrial fibrillation in Europe: a report from the Euro Observational Research Programme Pilot survey on Atrial Fibrillation. Europace 17, 24–31 (2015).

    Article  PubMed  Google Scholar 

  33. Boriani, G. et al. Asymptomatic atrial fibrillation: clinical correlates, management, and outcomes in the EORP-AF Pilot General Registry. Am. J. Med. 128, 509–518. e2 (2015).

    Article  PubMed  Google Scholar 

  34. Bhave, P. D., Lu, X., Girotra, S., Kamel, H. & Vaughan Sarrazin, M. S. Race- and sex-related differences in care for patients newly diagnosed with atrial fibrillation. Heart Rhythm 12, 1406–1412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Galperin, J. et al. Pharmacologic reversion of persistent atrial fibrillation with amiodarone predicts long-term sinus rhythm maintenance. J. Cardiovasc. Pharmacol. Ther. 8, 179–186 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Makkar, R. R., Fromm, B. S., Steinman, R. T., Meissner, M. D. & Lehmann, M. H. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270, 2590–2597 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann, M. H., Hardy, S., Archibald, D., Quart, B. & MacNeil, D. J. Sex difference in risk of torsade de pointes with d,l-sotalol. Circulation 94, 2535–2541 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Rienstra, M. et al. Gender-related differences in rhythm control treatment in persistent atrial fibrillation: data of the Rate Control versus Electrical Cardioversion (RACE) study. J. Am. Coll. Cardiol. 46, 1298–1306 (2005).

    Article  PubMed  Google Scholar 

  39. Alegret, J. M. et al. Gender differences in patients with atrial fibrillation undergoing electrical cardioversion. J. Womens Health (Larchmt) 24, 466–470 (2015).

    Article  Google Scholar 

  40. Boriani, G. et al. Electrical cardioversion for persistent atrial fibrillation or atrial flutter in clinical practice: predictors of long-term outcome. Int. J. Clin. Pract. 61, 748–756 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Biffi, M. et al. Atrial fibrillation recurrence after internal cardioversion: prognostic importance of electrophysiological parameters. Heart 87, 443–448 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gurevitz, O. T. et al. The effect of patient sex on recurrence of atrial fibrillation following successful direct current cardioversion. Am. Heart J. 152, 155.e9–155.e13 (2006).

    Article  Google Scholar 

  43. Calkins, H. et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. J. Interv. Card. Electrophysiol. 33, 171–257 (2012).

    Article  PubMed  Google Scholar 

  44. Patel, N. et al. Gender, race, and health insurance status in patients undergoing catheter ablation for atrial fibrillation. Am. J. Cardiol. 117, 1117–1126 (2016).

    Article  PubMed  Google Scholar 

  45. Gupta, A. et al. Complications of catheter ablation of atrial fibrillation: a systematic review. Circ. Arrhythm. Electrophysiol. 6, 1082–1088 (2013).

    Article  PubMed  Google Scholar 

  46. Vallakati, A. et al. Impact of gender on outcomes after atrial fibrillation ablation. Int. J. Cardiol. 187, 12–16 (2015).

    Article  PubMed  Google Scholar 

  47. Ganesan, A. N. et al. Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis. J. Am. Heart Assoc. 2, e004549 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi, L. Z., Heng, R., Liu, S. M. & Leng, F. Y. Effect of catheter ablation versus antiarrhythmic drugs on atrial fibrillation: a meta-analysis of randomized controlled trials. Exp. Ther. Med. 10, 816–822 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Santangeli, P., Di Biase, L., Pelargonio, G. & Natale, A. Outcome of invasive electrophysiological procedures and gender: are males and females the same? J. Cardiovasc. Electrophysiol. 22, 605–612 (2011).

    Article  PubMed  Google Scholar 

  50. Gatsonis, C. A., Epstein, A. M., Newhouse, J. P., Normand, S. L. & McNeil, B. J. Variations in the utilization of coronary angiography for elderly patients with an acute myocardial infarction. An analysis using hierarchical logistic regression. Med. Care 33, 625–642 (1995).

    Article  PubMed  CAS  Google Scholar 

  51. Udvarhelyi, I. S. et al. Acute myocardial infarction in the Medicare population. Process of care and clinical outcomes. JAMA 268, 2530–2536 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. Pashos, C. L., Newhouse, J. P. & McNeil, B. J. Temporal changes in the care and outcomes of elderly patients with acute myocardial infarction, 1987 through 1990. JAMA 270, 1832–1836 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. Ayanian, J. Z. & Epstein, A. M. Differences in the use of procedures between women and men hospitalized for coronary heart disease. N. Engl. J. Med. 325, 221–225 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. Forleo, G. B. et al. Gender-related differences in catheter ablation of atrial fibrillation. Europace 9, 613–620 (2007).

    Article  PubMed  Google Scholar 

  55. Takigawa, M. et al. Differences in catheter ablation of paroxysmal atrial fibrillation between males and females. Int. J. Cardiol. 168, 1984–1991 (2013).

    Article  PubMed  Google Scholar 

  56. Tilz, R. R. et al. Catheter ablation of long-standing persistent atrial fibrillation: 5-year outcomes of the Hamburg Sequential Ablation Strategy. J. Am. Coll. Cardiol. 60, 1921–1929 (2012).

    Article  PubMed  Google Scholar 

  57. Hoyt, H. et al. Complications arising from catheter ablation of atrial fibrillation: temporal trends and predictors. Heart Rhythm 8, 1869–1874 (2011).

    Article  PubMed  Google Scholar 

  58. Spragg, D. D. et al. Complications of catheter ablation for atrial fibrillation: incidence and predictors. J. Cardiovasc. Electrophysiol. 19, 627–631 (2008).

    Article  PubMed  Google Scholar 

  59. Aldhoon, B., Wichterle, D., Peichl, P., Cihak, R. & Kautzner, J. Complications of catheter ablation for atrial fibrillation in a high-volume centre with the use of intracardiac echocardiography. Europace 15, 24–32 (2013).

    Article  PubMed  Google Scholar 

  60. Baman, T. S. et al. Prevalence and predictors of complications of radiofrequency catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 22, 626–631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Piccini, J. P. et al. Outcomes of Medicare beneficiaries undergoing catheter ablation for atrial fibrillation. Circulation 126, 2200–2207 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Patel, D. et al. Outcomes and complications of catheter ablation for atrial fibrillation in females. Heart Rhythm 7, 167–172 (2010).

    Article  PubMed  Google Scholar 

  63. Kannel, W. B. & Benjamin, E. J. Status of the epidemiology of atrial fibrillation. Med. Clin. North Am. 92, 17–40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hart, R. G., Pearce, L. A. & Aguilar, M. I. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med. 146, 857–867 (2007).

    Article  PubMed  Google Scholar 

  65. Maisel, W. H. Food & Drug Administration, U.S. Center for Devices and Radiological Health. P130013 approval letter. FDA http://www.accessdata.fda.gov/cdrh_docs/pdf13/P130013a.pdf (2015).

  66. Lip, G. Y. et al. Does sex affect anticoagulant use for stroke prevention in nonvalvular atrial fibrillation? The prospective Global Anticoagulant Registry in the FIELD-Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 8, S12–S20 (2015).

    Article  PubMed  Google Scholar 

  67. Hsu, J. C. et al. Aspirin instead of oral anticoagulant prescription in atrial fibrillation patients at risk for stroke. J. Am. Coll. Cardiol. 67, 2913–2923 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Patel, P. A. et al. Novel oral anticoagulant use among patients with atrial fibrillation hospitalized with ischemic stroke or transient ischemic attack. Circ. Cardiovasc. Qual. Outcomes 8, 383–392 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Olesen, J. B. et al. Non-vitamin K antagonist oral anticoagulation agents in anticoagulant naive atrial fibrillation patients: Danish nationwide descriptive data 2011–2013. Europace 17, 187–193 (2015).

    Article  PubMed  Google Scholar 

  70. Avgil Tsadok, M., Jackevicius, C. A., Rahme, E., Humphries, K. H. & Pilote, L. Sex differences in dabigatran use, safety, and effectiveness in a population-based cohort of patients with atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes 8, 593–599 (2015).

    Article  PubMed  Google Scholar 

  71. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    Article  PubMed  CAS  Google Scholar 

  72. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130, 2071–2104 (2014).

    Article  PubMed  Google Scholar 

  73. [No authors listed.] Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch. Intern. Med. 154, 1449–1457 (1994).

  74. Pancholy, S. B. et al. Meta-analysis of gender differences in residual stroke risk and major bleeding in patients with nonvalvular atrial fibrillation treated with oral anticoagulants. Am. J. Cardiol. 113, 485–490 (2014).

    Article  PubMed  CAS  Google Scholar 

  75. Sullivan, R. M., Zhang, J., Zamba, G., Lip, G. Y. & Olshansky, B. Relation of gender-specific risk of ischemic stroke in patients with atrial fibrillation to differences in warfarin anticoagulation control (from AFFIRM). Am. J. Cardiol. 110, 1799–1802 (2012).

    Article  PubMed  CAS  Google Scholar 

  76. Gomberg-Maitland, M. et al. Anticoagulation in women with non-valvular atrial fibrillation in the stroke prevention using an oral thrombin inhibitor (SPORTIF) trials. Eur. Heart J. 27, 1947–1953 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. Gage, B. F. et al. Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF). Am. Heart J. 151, 713–719 (2006).

    Article  PubMed  Google Scholar 

  78. Pisters, R. et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 138, 1093–1100 (2010).

    Article  PubMed  Google Scholar 

  79. Fang, M. C. et al. A new risk scheme to predict warfarin-associated hemorrhage: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. J. Am. Coll. Cardiol. 58, 395–401 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. O'Brien, E. C. et al. The ORBIT bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation. Eur. Heart J. 36, 3258–3264 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Hylek, E. M., Skates, S. J., Sheehan, M. A. & Singer, D. E. An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. N. Engl. J. Med. 335, 540–546 (1996).

    Article  PubMed  CAS  Google Scholar 

  82. Reynolds, M. W. et al. Warfarin anticoagulation and outcomes in patients with atrial fibrillation: a systematic review and metaanalysis. Chest 126, 1938–1945 (2004).

    Article  PubMed  Google Scholar 

  83. Singer, D. E. et al. Should patient characteristics influence target anticoagulation intensity for stroke prevention in nonvalvular atrial fibrillation? The ATRIA study. Circ. Cardiovasc. Qual. Outcomes 2, 297–304 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fang, M. C. et al. Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation. Ann. Intern. Med. 141, 745–752 (2004).

    Article  PubMed  Google Scholar 

  85. White, H. D. et al. Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control: results from SPORTIF III and V. Arch. Intern. Med. 167, 239–245 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Jones, M. et al. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart 91, 472–477 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hylek, E. M. Vitamin K antagonists and time in the therapeutic range: implications, challenges, and strategies for improvement. J. Thromb. Thrombolysis 35, 333–335 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Rose, A. J., Ozonoff, A., Grant, R. W., Henault, L. E. & Hylek, E. M. Epidemiology of subtherapeutic anticoagulation in the United States. Circ. Cardiovasc. Qual. Outcomes 2, 591–597 (2009).

    Article  PubMed  Google Scholar 

  89. Ageno, W. et al. Oral anticoagulant therapy. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141, e44S–e88S (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Apostolakis, S., Sullivan, R. M., Olshansky, B. & Lip, G. Y. Factors affecting quality of anticoagulation control among patients with atrial fibrillation on warfarin: the SAMe-TT2R2 score. Chest 144, 1555–1563 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Abumuaileq, R. R. et al. Evaluation of SAMe-TT2R2 risk score for predicting the quality of anticoagulation control in a real-world cohort of patients with non-valvular atrial fibrillation on vitamin-K antagonists. Europace 17, 711–717 (2015).

    Article  PubMed  Google Scholar 

  92. Van Spall, H. G. et al. Variation in warfarin dose adjustment practice is responsible for differences in the quality of anticoagulation control between centers and countries: an analysis of patients receiving warfarin in the randomized evaluation of long-term anticoagulation therapy (RE-LY) trial. Circulation 126, 2309–2316 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Rose, A. J., Ozonoff, A., Henault, L. E. & Hylek, E. M. Warfarin for atrial fibrillation in community-based practise. J. Thromb. Haemost. 6, 1647–1654 (2008).

    Article  PubMed  CAS  Google Scholar 

  94. Nelson, W. W. et al. International normalized ratio stability in warfarin-experienced patients with nonvalvular atrial fibrillation. Am. J. Cardiovasc. Drugs 15, 205–211 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Dlott, J. S. et al. National assessment of warfarin anticoagulation therapy for stroke prevention in atrial fibrillation. Circulation 129, 1407–1414 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Poli, D. et al. Gender differences in stroke risk of atrial fibrillation patients on oral anticoagulant treatment. Thromb. Haemost. 101, 938–942 (2009).

    Article  PubMed  CAS  Google Scholar 

  97. Poli, D., Antonucci, E., Testa, S., Ageno, W. & Palareti, G. Gender differences of bleeding and stroke risk in very old atrial fibrillation patients on VKA treatment: results of the EPICA study on the behalf of FCSA (Italian Federation of Anticoagulation Clinics). Thromb. Res. 131, 12–16 (2013).

    Article  PubMed  CAS  Google Scholar 

  98. Pokorney, S. D. et al. Patients' time in therapeutic range on warfarin among US patients with atrial fibrillation: results from ORBIT-AF registry. Am. Heart J. 170, 141–148. e1 (2015).

    Article  PubMed  Google Scholar 

  99. Plichart, M. et al. Use of vitamin K antagonist therapy in geriatrics: a French national survey from the French Society of Geriatrics and Gerontology (SFGG). Drugs Aging 30, 1019–1028 (2013).

    Article  PubMed  CAS  Google Scholar 

  100. Ho, C. W. et al. Ischemic stroke and intracranial hemorrhage with aspirin, dabigatran, and warfarin: impact of quality of anticoagulation control. Stroke 46, 23–30 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. Witt, D. M. et al. Outcomes and predictors of very stable INR control during chronic anticoagulation therapy. Blood 114, 952–956 (2009).

    Article  PubMed  CAS  Google Scholar 

  102. Witt, D. M. et al. Twelve-month outcomes and predictors of very stable INR control in prevalent warfarin users. J. Thromb. Haemost. 8, 744–749 (2010).

    Article  PubMed  CAS  Google Scholar 

  103. Skanes, A. C. et al. Focused 2012 update of the Canadian Cardiovascular Society atrial fibrillation guidelines: recommendations for stroke prevention and rate/rhythm control. Can. J. Cardiol. 28, 125–136 (2012).

    Article  PubMed  Google Scholar 

  104. Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    Article  PubMed  CAS  Google Scholar 

  105. Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    Article  PubMed  CAS  Google Scholar 

  106. Giugliano, R. P. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369, 2093–2104 (2013).

    Article  PubMed  CAS  Google Scholar 

  107. Weitz, J. I. et al. Trends in prescribing oral anticoagulants in Canada, 2008–2014. Clin. Ther. 37, 2506–2514. e4 (2015).

    Article  PubMed  Google Scholar 

  108. Barnes, G. D., Lucas, E., Alexander, G. C. & Goldberger, Z. D. National trends in ambulatory oral anticoagulant use. Am. J. Med. 128, 1300–1305. e2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kirley, K., Qato, D. M., Kornfield, R., Stafford, R. S. & Alexander, G. C. National trends in oral anticoagulant use in the United States, 2007 to 2011. Circ. Cardiovasc. Qual. Outcomes 5, 615–621 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ruff, C. T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383, 955–962 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Connolly, S. J. et al. Apixaban in patients with atrial fibrillation. N. Engl. J. Med. 364, 806–817 (2011).

    Article  PubMed  CAS  Google Scholar 

  112. Vinereanu, D. et al. Clinical outcomes in patients with atrial fibrillation according to sex during anticoagulation with apixaban or warfarin: a secondary analysis of a randomized controlled trial. Eur. Heart J. 36, 3268–3275 (2015).

    PubMed  Google Scholar 

  113. Lip, G. Y. et al. Modification of outcomes with aspirin or apixaban in relation to female and male sex in patients with atrial fibrillation: a secondary analysis of the AVERROES study. Stroke 45, 2127–2130 (2014).

    Article  PubMed  CAS  Google Scholar 

  114. Goodman, S. G. et al. Factors associated with major bleeding events: insights from the ROCKET AF trial (rivaroxaban once-daily oral direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation). J. Am. Coll. Cardiol. 63, 891–900 (2014).

    Article  PubMed  Google Scholar 

  115. Hylek, E. M. et al. Major bleeding in patients with atrial fibrillation receiving apixaban or warfarin: the ARISTOTLE trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in atrial fibrillation): predictors, characteristics, and clinical outcomes. J. Am. Coll. Cardiol. 63, 2141–2147 (2014).

    Article  PubMed  Google Scholar 

  116. Holmes, D. R. et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet 374, 534–542 (2009).

    Article  PubMed  CAS  Google Scholar 

  117. Rosano, G. M. et al. Gender differences in the effect of cardiovascular drugs: a position document of the Working Group on Pharmacology and Drug Therapy of the ESC. Eur. Heart J. 36, 2677–2680 (2015).

    Article  PubMed  CAS  Google Scholar 

  118. Kendall, M. J., Quarterman, C. P., Jack, D. B. & Beeley, L. Metoprolol pharmacokinetics and the oral contraceptive pill. Br. J. Clin. Pharmacol. 14, 120–122 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Walle, T., Walle, U. K., Cowart, T. D. & Conradi, E. C. Pathway-selective sex differences in the metabolic clearance of propranolol in human subjects. Clin. Pharmacol. Ther. 46, 257–263 (1989).

    Article  PubMed  CAS  Google Scholar 

  120. Walle, T., Walle, U. K., Mathur, R. S., Palesch, Y. Y. & Conradi, E. C. Propranolol metabolism in normal subjects: association with sex steroid hormones. Clin. Pharmacol. Ther. 56, 127–132 (1994).

    Article  PubMed  CAS  Google Scholar 

  121. Luzier, A. B. et al. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin. Pharmacol. Ther. 66, 594–601 (1999).

    Article  PubMed  CAS  Google Scholar 

  122. Krecic-Shepard, M. E., Barnas, C. R., Slimko, J. & Schwartz, J. B. Faster clearance of sustained release verapamil in men versus women: continuing observations on sex-specific differences after oral administration of verapamil. Clin. Pharmacol. Ther. 68, 286–292 (2000).

    Article  PubMed  CAS  Google Scholar 

  123. Gupta, S. K., Atkinson, L., Tu, T. & Longstreth, J. A. Age and gender related changes in stereoselective pharmacokinetics and pharmacodynamics of verapamil and norverapamil. Br. J. Clin. Pharmacol. 40, 325–331 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Dadashzadeh, S., Javadian, B. & Sadeghian, S. The effect of gender on the pharmacokinetics of verapamil and norverapamil in human. Biopharm. Drug Dispos. 27, 329–334 (2006).

    Article  PubMed  CAS  Google Scholar 

  125. Mitoff, P. R. et al. Cardiac-specific sympathetic activation in men and women with and without heart failure. Heart 97, 382–387 (2011).

    Article  PubMed  Google Scholar 

  126. Garcia, D., Regan, S., Crowther, M., Hughes, R. A. & Hylek, E. M. Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest 127, 2049–2056 (2005).

    Article  PubMed  CAS  Google Scholar 

  127. Schwartz, J. B. The influence of sex on pharmacokinetics. Clin. Pharmacokinet. 42, 107–121 (2003).

    Article  PubMed  CAS  Google Scholar 

  128. Soldin, O. P. & Mattison, D. R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 48, 143–157 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ding, E. L., Powe, N. R., Manson, J. E., Sherber, N. S. & Braunstein, J. B. Sex differences in perceived risks, distrust, and willingness to participate in clinical trials: a randomized study of cardiovascular prevention trials. Arch. Intern. Med. 167, 905–912 (2007).

    Article  PubMed  Google Scholar 

  130. Chalkidou, K., Tunis, S., Whicher, D., Fowler, R. & Zwarenstein, M. The role for pragmatic randomized controlled trials (pRCTs) in comparative effectiveness research. Clin. Trials 9, 436–446 (2012).

    Article  PubMed  Google Scholar 

  131. Karcher, R. et al. Addressing disparities in stroke prevention for atrial fibrillation: educational opportunities. Am. J. Med. Qual. 31, 337–348 (2015).

    Article  PubMed  Google Scholar 

  132. Petersen, P., Boysen, G., Godtfredsen, J., Andersen, E. D. & Andersen, B. Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet 1, 175–179 (1989).

    Article  PubMed  CAS  Google Scholar 

  133. The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N. Engl. J. Med. 323, 1505–1511 (1990).

  134. Connolly, S. J. et al. Canadian Atrial Fibrillation Anticoaguiation (CAFA) study. J. Am. Coll. Cardiol. 18, 349–355 (1991).

    Article  PubMed  CAS  Google Scholar 

  135. Stroke Prevention in Atrial Fibrillation Investigators. Stroke Prevention in Atrial Fibrillation Study. Final results. Circulation 84, 527–539 (1991).

  136. Ezekowitz, M. D. et al. Warfarin in the prevention of stroke associated with nonrheumatic atrial fibrillation. N. Engl. J. Med. 327, 1406–1412 (1992).

    Article  PubMed  CAS  Google Scholar 

  137. Mant, J. et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged study, BAFTA): a randomised controlled trial. Lancet 370, 493–503 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D.K. is supported by the National Heart, Lung, and Blood Institute award 5T32HL007224-38 and the NIH Clinical and Translational Science Award programme UL1-TR000157. M.A.P.M. is supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazilian government programme for postdoctorate degree abroad (grant number 200639/2015-3). E.M.H is supported in part through NCRR/NIH U54TR001012, KL2RR025770, TL1RR025769, and 1R01HL106029-03. P.T.E is supported by grants from the NIH (2RO1HL092577, 1K24HL105780), an Established Investigator Award from the AHA (13EIA14220013), and the Fondation Leducq (14CVD01). R.B.S. is supported by the European Research Council under the European Union's Horizon 2020 research and innovation programme (agreement No 648131), the Junior Research Alliance symAtrial project funded by the German Ministry of Research and Education (BMBF 01ZX1408A) e:Med – Systems Medicine programme and by Deutsche Forschungsgemeinschaft (German Research Foundation) Emmy Noether Program SCHN 1149/3-1. E.J.B. is supported in part through NIH/NHLBI HHSN268201500001I, N01-HC25195, 2R01HL092577, and 1R01HL128914. I.E.C. is supported by a mobility grant from the Research Council of Norway (240149/F20).

Author information

Authors and Affiliations

Authors

Contributions

D.K., F.R., M.A.P.M., E.J.B., and I.E.C. researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission. R.B.S. discussed the content of the article, and reviewed/edited the manuscript before submission. E.M.H. and P.T.E. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Ingrid E. Christophersen.

Ethics declarations

Competing interests

E.M.H. has served on Advisory Boards for Armetheon, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Janssen, Medtronic, Pfizer, and Portola. P.T.E. is a principal investigator on a grant from Bayer HealthCare to the Broad Institute. The other authors declare no competing interests.

Supplementary information

Supplementary information S1 (table)

Sex-specific differences in rate-control and rhythm-control strategies in observational studies (PDF 141 kb)

Supplementary information S2 (table)

Sex-specific differences in oral anticoagulant prescription for stroke prevention in AF (PDF 175 kb)

Supplementary information S3 (table)

Randomized controlled trials for sex-specific efficacy and bleeding complications for warfarin (PDF 125 kb)

Supplementary information S4 (table)

Sex-specific differences in TTR (PDF 134 kb)

Supplementary information S5 (table)

Randomized, controlled trials for sex-specific efficacy and bleeding complications for NOACs (PDF 171 kb)

Supplementary information S6 (table)

Search strategies* (PDF 102 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, D., Rahman, F., Martins, M. et al. Atrial fibrillation in women: treatment. Nat Rev Cardiol 14, 113–124 (2017). https://doi.org/10.1038/nrcardio.2016.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing