Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of 3D printing in cardiovascular diseases

Key Points

  • Medical 3D printing refers to the fabrication of anatomical structures, typically derived from volumetric medical image data, and enables visual inspection and direct manipulation of hand-held models of human anatomy and pathology

  • In cardiovascular 3D printing, advanced modern imaging such CT and MR is combined with dedicated 3D printing software and hardware

  • Cardiovascular 3D printing enhances the diagnostic work-up of complex cardiovascular diseases, as well as surgical and interventional procedural planning and simulation

  • 3D printing improves patient engagement in understanding their own diseases and participating in their own decision-making, and improves communication with patients and their families

  • Widespread adoption of 3D printing is currently limited by the lack of robust evidence that systematically demonstrates effectiveness, and by the high costs and workflow complexity

  • Cardiovascular 3D bioprinting and molecular 3D printing — which combine advanced manufacturing, cell biology, molecular biomarkers, and materials science — have not yet translated into clinical practice, but hold great promise for the future

Abstract

3D-printed models fabricated from CT, MRI, or echocardiography data provide the advantage of haptic feedback, direct manipulation, and enhanced understanding of cardiovascular anatomy and underlying pathologies. Reported applications of cardiovascular 3D printing span from diagnostic assistance and optimization of management algorithms in complex cardiovascular diseases, to planning and simulating surgical and interventional procedures. The technology has been used in practically the entire range of structural, valvular, and congenital heart diseases, and the added-value of 3D printing is established. Patient-specific implants and custom-made devices can be designed, produced, and tested, thus opening new horizons in personalized patient care and cardiovascular research. Physicians and trainees can better elucidate anatomical abnormalities with the use of 3D-printed models, and communication with patients is markedly improved. Cardiovascular 3D bioprinting and molecular 3D printing, although currently not translated into clinical practice, hold revolutionary potential. 3D printing is expected to have a broad influence in cardiovascular care, and will prove pivotal for the future generation of cardiovascular imagers and care providers. In this Review, we summarize the cardiovascular 3D printing workflow, from image acquisition to the generation of a hand-held model, and discuss the cardiovascular applications and the current status and future perspectives of cardiovascular 3D printing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiovascular 3D printing workflow.
Figure 2: 3D printing-assisted intervention and surgery planning of structural heart diseases.
Figure 3: 3D printing of aortic and mitral valves.
Figure 4: 3D printing and modelling for transcatheter mitral and pulmonary valve implantation.
Figure 5: 3D printing applications for patients with congenital heart disease.
Figure 6: 3D printing applications for invasive and noninvasive management of vascular pathologies.
Figure 7: Suggested framework for medical and cardiovascular 3D printing clinical trials.

Similar content being viewed by others

References

  1. Mitsouras, D. et al. Medical 3D printing for the radiologist. Radiographics 35, 1965–1988 (2015).

    Article  PubMed  Google Scholar 

  2. Giannopoulos, A. A. et al. Cardiothoracic applications of 3-dimensional printing. J. Thorac. Imaging 31, 253–272 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim, M. S., Hansgen, A. R., Wink, O., Quaife, R. A. & Carroll, J. D. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117, 2388–2394 (2008).

    Article  PubMed  Google Scholar 

  4. Ryan, J. R. et al. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc. Imaging 8, 103–104 (2015).

    Article  PubMed  Google Scholar 

  5. Schmauss, D., Haeberle, S., Hagl, C. & Sodian, R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur. J. Cardiothorac. Surg. 47, 1044–1052 (2015).

    Article  PubMed  Google Scholar 

  6. Pellegrino, P. L., Fassini, G., Di Biase, M. & Tondo, C. Left atrial appendage closure guided by 3D printed cardiac reconstruction: emerging directions and future trends. J. Cardiovasc. Electrophysiol. 27, 768–771 (2016).

    Article  PubMed  Google Scholar 

  7. Yang, D. H. et al. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation 132, 300–301 (2015).

    Article  PubMed  Google Scholar 

  8. Mashari, A. et al. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing. J. Cardiothorac. Vasc. Anesth. 30, 1278–1285 (2016).

    Article  PubMed  Google Scholar 

  9. Sulkin, M. S. et al. Three-dimensional printing physiology laboratory technology. Am. J. Physiol. Heart Circ. Physiol. 305, H1569–H1573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biglino, G. et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5, e007165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Costello, J. P. et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit. Heart Dis. 10, 185–190 (2015).

    Article  PubMed  Google Scholar 

  12. Olivieri, L. J. et al. “Just-in-time” simulation training using 3D printed cardiac models after congenital cardiac surgery. World J. Pediatr. Congenit. Heart Surg. 7, 164–168 (2016).

    Article  PubMed  Google Scholar 

  13. Greil, G. F. et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin. Res. Cardiol. 96, 176–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Yoo, S.-J. et al. 3D printing in medicine of congenital heart diseases. 3D Print. Med. 2, 2 (2016).

    Article  Google Scholar 

  15. Olivieri, L. J. et al. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J. Am. Soc. Echocardiogr. 28, 392–397 (2015).

    Article  PubMed  Google Scholar 

  16. Mahmood, F. et al. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc. Imaging 8, 227–229 (2015).

    Article  PubMed  Google Scholar 

  17. Ionita, C. N. et al. Angiographic imaging evaluation of patient-specific bifurcation-aneurysm phantom treatment with pre-shaped, self-expanding, flow-diverting stents: feasibility study. Proc. SPIE Int. Soc. Opt. Eng. 7965, 79651H-1–79651H-9 (2011).

    Google Scholar 

  18. Poterucha, J. T., Foley, T. A. & Taggart, N. W. Percutaneous pulmonary valve implantation in a native outflow tract: 3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model. JACC Cardiovasc. Interv. 7, e151–e152 (2014).

    Article  PubMed  Google Scholar 

  19. Frolich, A. M. et al. 3D printing of intracranial aneurysms using fused deposition modeling offers highly accurate replications. AJNR Am. J. Neuroradiol. 37, 120–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurup, H. K., Samuel, B. P. & Vettukattil, J. J. Hybrid 3D printing: a game-changer in personalized cardiac medicine? Expert Rev. Cardiovasc. Ther. 13, 1281–1284 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Byrne, N., Velasco Forte, M., Tandon, A., Valverde, I. & Hussain, T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc. Dis. http://dx.doi.org/10.1177/2048004016645467 (2016).

  22. Jacobs, S., Grunert, R., Mohr, F. W. & Falk, V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact. Cardiovasc. Thorac. Surg. 7, 6–9 (2008).

    Article  PubMed  Google Scholar 

  23. Kumamaru, K. K., Hoppel, B. E., Mather, R. T. & Rybicki, F. J. CT angiography: current technology and clinical use. Radiol. Clin. North Am. 48, 213–235 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto, J. S. et al. Three-dimensional physical modeling: applications and experience at Mayo Clinic. Radiographics 35, 1989–2006 (2015).

    Article  PubMed  Google Scholar 

  25. Itagaki, M. W. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn. Interv. Radiol. 21, 338–341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schievano, S. et al. First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. EuroIntervention 5, 745–750 (2010).

    Article  PubMed  Google Scholar 

  27. Wang, D. D. et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc. Imaging http://dx.doi.org/10.1016/j.jcmg.2016.01.017 (2016).

  28. Di Prima, M. et al. Additively manufactured medical products — the FDA perspective. 3D Print. Med. 2, 1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rybicki, F. J. 3D printing in medicine: an introductory message from the editor-in-chief. 3D Print. Med. 1, 1 (2015).

    Article  PubMed  Google Scholar 

  30. Fishman, E. K. et al. Volumetric rendering techniques: applications for three-dimensional imaging of the hip. Radiology 163, 737–738 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Fujita, B. et al. Calcium distribution patterns of the aortic valve as a risk factor for the need of permanent pacemaker implantation after transcatheter aortic valve implantation. Eur. Heart J. Cardiovasc. Imaging http://dx.doi.org/10.1093/ehjci/jev343 (2016).

  32. Gallo, M. et al. 3D-printing model for complex aortic transcatheter valve treatment. Int. J. Cardiol. 210, 139–140 (2016).

    Article  PubMed  Google Scholar 

  33. Otton, J. M. et al. Left atrial appendage closure guided by personalized 3D-printed cardiac reconstruction. JACC Cardiovasc. Interv. 8, 1004–1006 (2015).

    Article  PubMed  Google Scholar 

  34. Witschey, W. R. et al. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann. Thorac. Surg. 98, 691–694 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Costello, J. P. et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J. Pediatr. Congenit. Heart Surg. 5, 421–426 (2014).

    Article  PubMed  Google Scholar 

  36. Riesenkampff, E. et al. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J. Thorac. Cardiovasc. Surg. 138, 571–580 (2009).

    Article  PubMed  Google Scholar 

  37. Pepper, J. et al. Implantation of an individually computer-designed and manufactured external support for the Marfan aortic root. Multimed. Man. Cardiothorac. Surg. 2013, mmt004 (2013).

    PubMed  Google Scholar 

  38. Tam, M. D., Latham, T., Brown, J. R. & Jakeways, M. Use of a 3D printed hollow aortic model to assist EVAR planning in a case with complex neck anatomy: potential of 3D printing to improve patient outcome. J. Endovasc. Ther. 21, 760–762 (2014).

    Article  PubMed  Google Scholar 

  39. Steinberg, D. H., Staubach, S., Franke, J. & Sievert, H. Defining structural heart disease in the adult patient: current scope, inherent challenges and future directions. Eur. Heart J. Suppl. 12, E2–E9 (2010).

    Article  Google Scholar 

  40. Holmes, D. R., Lakkireddy, D. R., Whitlock, R. P., Waksman, R. & Mack, M. J. Left atrial appendage occlusionopportunities and challenges. J. Am. Coll. Cardiol. 63, 291–298 (2014).

    Article  PubMed  Google Scholar 

  41. Pison, L. et al. Left atrial appendage closure — indications, techniques, and outcomes: results of the European Heart Rhythm Association Survey. Europace 17, 642–646 (2015).

    Article  PubMed  Google Scholar 

  42. Masoudi, F. A. et al. 2015 ACC/HRS/SCAI left atrial appendage occlusion device societal overview: a professional societal overview from the American College of Cardiology, Heart Rhythm Society, and Society for Cardiovascular Angiography and Interventions. Catheter. Cardiovasc. Interv. 86, 791–807 (2015).

    Article  PubMed  Google Scholar 

  43. Camm, A. J. et al. 2012 focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur. Heart. J. 33, 2719–2747 (2012).

    Article  PubMed  Google Scholar 

  44. Wunderlich, N. C., Beigel, R., Swaans, M. J., Ho, S. Y. & Siegel, R. J. Percutaneous interventions for left atrial appendage exclusion: options, assessment, and imaging using 2D and 3D echocardiography. JACC Cardiovasc. Imaging 8, 472–488 (2015).

    Article  PubMed  Google Scholar 

  45. Mügge, A. et al. Atrial septal aneurysm in adult patients: a multicenter study using transthoracic and transesophageal echocardiography. Circulation 91, 2785–2792 (1995).

    Article  PubMed  Google Scholar 

  46. Ba'Albaki, H. A. & Clements, S. D. Left ventricular aneurysm: a review. Clin. Cardiol. 12, 5–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Burger, A. J., Sherman, H. B. & Charlamb, M. J. Low incidence of embolic strokes with atrial septal aneurysms: a prospective, long-term study. Am. Heart J. 139, 149–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wahl, A. et al. Transcatheter treatment of atrial septal aneurysm associated with patent foramen ovale for prevention of recurrent paradoxical embolism in high-risk patients. J. Am. Coll. Cardiol. 45, 377–380 (2005).

    Article  PubMed  Google Scholar 

  49. Treasure, T. False aneurysm of the left ventricle. Heart 80, 7–8 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maron, B. J., Rowin, E. J., Casey, S. A. & Maron, M. S. How hypertrophic cardiomyopathy became a contemporary treatable genetic disease with low mortality: shaped by 50 years of clinical research and practice. JAMA Cardiol. 1, 98–105 (2016).

    Article  PubMed  Google Scholar 

  51. Gersh, B. J. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 58, e212–e260 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Elliott, P. M. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart. J. 35, 2733–2779 (2014).

    Article  PubMed  Google Scholar 

  53. Maron, B. J., Yacoub, M. & Dearani, J. A. Benefits of surgery in obstructive hypertrophic cardiomyopathy: bring septal myectomy back for European patients. Eur. Heart J. 32, 1055–1058 (2011).

    Article  PubMed  Google Scholar 

  54. Maron, B. J. et al. Low operative mortality achieved with surgical septal myectomy: role of dedicated hypertrophic cardiomyopathy centers in the management of dynamic subaortic obstruction. J. Am. Coll. Cardiol. 66, 1307–1308 (2015).

    Article  PubMed  Google Scholar 

  55. Hermsen, J. L. et al. Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. http://dx.doi.org/10.1016/j.jtcvs.2016.08.007 (2016).

  56. Leja, M. J., Shah, D. J. & Reardon, M. J. Primary cardiac tumors. Tex. Heart Inst. J. 38, 261–262 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Hoffmeier, A., Sindermann, J. R., Scheld, H. H. & Martens, S. Cardiac tumors — diagnosis and surgical treatment. Dtsch. Arztebl. Int. 111, 205–211 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Schmauss, D., Gerber, N. & Sodian, R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J. Thorac. Cardiovasc Surg. 145, 1407–1408 (2013).

    Article  PubMed  Google Scholar 

  59. Son, K. H. et al. Surgical planning by 3D printing for primary cardiac schwannoma resection. Yonsei Med. J. 56, 1735–1737 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Al Jabbari, O., Abu Saleh, W. K., Patel, A. P., Igo, S. R. & Reardon, M. J. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J. Card. Surg. 31, 581–583 (2016).

    Article  PubMed  Google Scholar 

  61. Schmauss, D. et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann. Thorac. Surg. 93, e31–e33 (2012).

    Article  PubMed  Google Scholar 

  62. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, e57–e185 (2014).

    Article  PubMed  Google Scholar 

  63. Moat, N. E. Will TAVR become the predominant method for treating severe aortic stenosis? N. Engl. J. Med. 374, 1682–1683 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Webb, J. G. & Lauck, S. Transcatheter aortic valve replacement in transition. JACC Cardiovasc. Interv. 9, 1159–1160 (2016).

    Article  PubMed  Google Scholar 

  65. Figulla, H. R., Webb, J. G., Lauten, A. & Feldman, T. The transcatheter valve technology pipeline for treatment of adult valvular heart disease. Eur. Heart J. 37, 2226–2239 (2016).

    Article  PubMed  Google Scholar 

  66. Abdel-Sayed, P., Kalejs, M. & von Segesser, L. K. A new training set-up for trans-apical aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 8, 599–601 (2009).

    Article  PubMed  Google Scholar 

  67. Fujita, B. et al. Development of an algorithm to plan and simulate a new interventional procedure. Interact. Cardiovasc. Thorac. Surg. 21, 87–95 (2015).

    Article  PubMed  Google Scholar 

  68. Maragiannis, D. et al. Functional 3D printed patient-specific modeling of severe aortic stenosis. J. Am. Coll. Cardiol. 64, 1066–1068 (2014).

    Article  PubMed  Google Scholar 

  69. Maragiannis, D. et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ. Cardiovasc. Imaging 8, e003626 (2015).

    Article  PubMed  Google Scholar 

  70. Binder, T. M. et al. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J. Am. Coll. Cardiol. 35, 230–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Dankowski, R. et al. 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report. Kardiol. Pol. 72, 546–551 (2014).

    Article  PubMed  Google Scholar 

  72. Kapur, K. K. & Garg, N. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann. Card. Anaesth. 17, 283–284 (2014).

    CAS  PubMed  Google Scholar 

  73. Mahmood, F. et al. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann. Card. Anaesth. 17, 279–283 (2014).

    Article  PubMed  Google Scholar 

  74. Owais, K. et al. Three-dimensional printing of the mitral annulus using echocardiographic data: science fiction or in the operating room next door? J. Cardiothorac. Vasc. Anesth. 28, 1393–1396 (2014).

    Article  PubMed  Google Scholar 

  75. Little, S. H., Vukicevic, M., Avenatti, E., Ramchandani, M. & Barker, C. M. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. JACC Cardiovasc. Interv. 9, 973–975 (2016).

    Article  PubMed  Google Scholar 

  76. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Sorajja, P., Cabalka, A. K., Hagler, D. J. & Rihal, C. S. Long-term follow-up of percutaneous repair of paravalvular prosthetic regurgitation. J. Am. Coll. Cardiol. 58, 2218–2224 (2011).

    Article  PubMed  Google Scholar 

  78. Ripley, B. et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 10, 28–36 (2016).

    Article  PubMed  Google Scholar 

  79. Dill, K. E. et al. ACR appropriateness criteria imaging for transcatheter aortic valve replacement. J. Am. Coll. Radiol. 10, 957–965 (2013).

    Article  PubMed  Google Scholar 

  80. Schievano, S. et al. Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J. Cardiovasc. Magn. Reson. 9, 687–695 (2007).

    Article  PubMed  Google Scholar 

  81. Chung, R. & Taylor, A. M. Imaging for preintervention planning: transcatheter pulmonary valve therapy. Circ. Cardiovasc. Imaging 7, 182–189 (2014).

    Article  PubMed  Google Scholar 

  82. Pluchinotta, F. R. et al. Treatment of right ventricular outflow tract dysfunction: a multimodality approach. Eur. Heart J. Suppl. 18, E22–E26 (2016).

    Article  PubMed  Google Scholar 

  83. Schievano, S. et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242, 490–497 (2007).

    Article  PubMed  Google Scholar 

  84. Schievano, S. et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc. Inst. Mech. Eng. H 221, 407–416 (2007).

    Article  PubMed  Google Scholar 

  85. Phillips, A. B. M. et al. Development of a novel hybrid strategy for transcatheter pulmonary valve placement in patients following transannular patch repair of tetralogy of fallot. Catheter. Cardiovasc. Interv. 87, 403–410 (2016).

    Article  PubMed  Google Scholar 

  86. Muraru, D. et al. Feasibility and relative accuracy of three-dimensional printing of normal and pathologic tricuspid valves from transthoracic three-dimensional echocardiographic data sets. J. Am. Coll. Cardiol. 67, 1658 (2016).

    Article  Google Scholar 

  87. Amerini, A. et al. A personalized approach to interventional treatment of tricuspid regurgitation: experiences from an acute animal study. Interact. Cardiovasc. Thorac. Surg. 19, 414–418 (2014).

    Article  PubMed  Google Scholar 

  88. O'Neill, B. et al. Transcatheter caval valve implantation using multimodality imaging: roles of TEE, CT, and 3D printing. JACC Cardiovasc. Imaging 8, 221–225 (2015).

    Article  PubMed  Google Scholar 

  89. Hoffman, J. I. E. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  PubMed  Google Scholar 

  90. van der Linde, D. et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58, 2241–2247 (2011).

    Article  PubMed  Google Scholar 

  91. Oster, M. E. et al. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131, e1502–e1508 (2013).

    Article  PubMed  Google Scholar 

  92. Benziger, C. P., Stout, K., Zaragoza-Macias, E., Bertozzi-Villa, A. & Flaxman, A. D. Projected growth of the adult congenital heart disease population in the United States to 2050: an integrative systems modeling approach. Popul. Health Metr. 13, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Webb, G. & Gatzoulis, M. A. Atrial septal defects in the adult: recent progress and overview. Circulation 114, 1645–1653 (2006).

    Article  PubMed  Google Scholar 

  94. Baumgartner, H. et al. ESC Guidelines for the management of grown-up congenital heart disease. The Task Force on the management of grown-up congenital heart disease of the European Society of Cardiology (ESC). Eur. Heart J. 31, 2915–2957 (2010).

    Article  PubMed  Google Scholar 

  95. Mavroudis, C. & Backer, C. L. Closure of ventricular septal defect. Oper. Tech. Thorac. Cardiovasc. Surg. 7, 11–21 (2002).

    Article  Google Scholar 

  96. Mongeon, F.-P. et al. Indications and outcomes of surgical closure of ventricular septal defect in adults. JACC Cardiovasc. Interv. 3, 290–297 (2010).

    Article  PubMed  Google Scholar 

  97. Chaowu, Y., Hua, L. & Xin, S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model. Circulation 133, e608–e610 (2016).

    Article  PubMed  Google Scholar 

  98. Bartel, T., Rivard, A., Jimenez, A. & Edris, A. Three-dimensional printing for quality management in device closure of interatrial communications. Eur. Heart J. Cardiovasc. Imaging 17, 1069 (2016).

    Article  PubMed  Google Scholar 

  99. Shiraishi, I., Kurosaki, K., Kanzaki, S. & Ichikawa, H. Development of super flexible replica of congenital heart disease with stereolithography 3D printing for simulation surgery and medical education. J. Card. Failure 20, S180–S181 (2014).

    Article  Google Scholar 

  100. Shiraishi, I., Yamagishi, M., Hamaoka, K., Fukuzawa, M. & Yagihara, T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardiothorac. Surg. 37, 302–306 (2010).

    PubMed  Google Scholar 

  101. Noecker, A. M. et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 52, 349–353 (2006).

    Article  PubMed  Google Scholar 

  102. Giannopoulos, A. A. et al. 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Print. Med. 1, 3 (2015).

    Article  PubMed  Google Scholar 

  103. Samuel, B. P., Pinto, C., Pietila, T. & Vettukattil, J. J. Ultrasound-derived three-dimensional printing in congenital heart disease. J. Digit. Imaging 28, 459–461 (2015).

    Article  PubMed  Google Scholar 

  104. Faganello, G. et al. Three dimensional printing of an atrial septal defect: is it multimodality imaging? Int. J. Cardiovasc. Imaging 32, 427–428 (2016).

    Article  PubMed  Google Scholar 

  105. Chessa, M. et al. Early and late complications associated with transcatheter occlusion of secundum atrial septal defect. J. Am. Coll. Cardiol. 39, 1061–1065 (2002).

    Article  PubMed  Google Scholar 

  106. Arnaoutakis, G. J. et al. Surgical repair of ventricular septal defect after myocardial infarction: outcomes from the Society of Thoracic Surgeons national database. Ann. Thorac. Surg. 94, 436–444 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Thiele, H. et al. Immediate primary transcatheter closure of postinfarction ventricular septal defects. Eur. Heart J. 30, 81–88 (2009).

    Article  PubMed  Google Scholar 

  108. Demkow, M. et al. Primary transcatheter closure of postinfarction ventricular septal defects with the Amplatzer septal occluder — immediate results and up-to 5 years follow-up. EuroIntervention 1, 43–47 (2005).

    CAS  PubMed  Google Scholar 

  109. Lazkani, M. et al. Postinfarct VSD management using 3D computer printing assisted percutaneous closure. Indian Heart J. 67, 581–585 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mottl-Link, S. et al. Physical models aiding in complex congenital heart surgery. Ann. Thorac. Surg. 86, 273–277 (2008).

    Article  PubMed  Google Scholar 

  111. Olivieri, L., Krieger, A., Chen, M. Y., Kim, P. & Kanter, J. P. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int. J. Cardiol. 172, e297–e298 (2014).

    Article  PubMed  Google Scholar 

  112. Shirakawa, T., Koyama, Y., Mizoguchi, H. & Yoshitatsu, M. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology. Interact. Cardiovasc. Thorac. Surg. 22, 688–690 (2016).

    Article  PubMed  Google Scholar 

  113. Sodian, R. et al. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J. Thorac. Cardiovasc. Surg. 136, 1098–1099 (2008).

    Article  PubMed  Google Scholar 

  114. Valverde, I. et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol. Young 25, 698–704 (2015).

    Article  PubMed  Google Scholar 

  115. Anwar, S. et al. 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. JACC Cardiovasc. Imaging http://dx.doi.org/10.1016/j.jcmg.2016.03.013 (2016).

  116. Farooqi, K. M. et al. Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr. Cardiol. 37, 90–98 (2016).

    Article  PubMed  Google Scholar 

  117. Vodiskar, J., Kutting, M., Steinseifer, U., Vazquez-Jimenez, J. F. & Sonntag, S. J. Using 3D physical modeling to plan surgical corrections of complex congenital heart defects. Thorac. Cardiovasc. Surg. http://dx.doi.org/10.1055/s-0036-1584136 (2016).

  118. Wilcox, B. R. et al. Surgical anatomy of double-outlet right ventricle with situs solitus and atrioventricular concordance. J. Thorac. Cardiovasc. Surg. 82, 405–417 (1981).

    CAS  PubMed  Google Scholar 

  119. Farooqi, K. M. & Sengupta, P. P. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J. Am. Soc. Echocardiogr. 28, 398–403 (2015).

    Article  PubMed  Google Scholar 

  120. Ngan, E. M. et al. The rapid prototyping of anatomic models in pulmonary atresia. J. Thorac. Cardiovasc. Surg. 132, 264–269 (2006).

    Article  PubMed  Google Scholar 

  121. Schrot, J., Pietila, T. & Sahu, A. State of the art: 3D printing for creating compliant patient-specific congenital heart defect models. J. Cardiovasc. Magn. Reson. 16 (Suppl. 1), W19 (2014).

    Article  PubMed Central  Google Scholar 

  122. Shiraishi, I., Kajiyama, Y., Yamagishi, M. & Hamaoka, K. Images in cardiovascular medicine. Stereolithographic biomodeling of congenital heart disease by multislice computed tomography imaging. Circulation 113, e733–e734 (2006).

    Article  PubMed  Google Scholar 

  123. Kiraly, L., Tofeig, M., Jha, N. K. & Talo, H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact. Cardiovasc. Thorac. Surg. 22, 238–240 (2016).

    Article  PubMed  Google Scholar 

  124. Norozi, K. et al. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am. J. Cardiol. 97, 1238–1243 (2006).

    Article  PubMed  Google Scholar 

  125. Stewart, G. C. & Mayer, J. E. Jr. Heart transplantation in adults with congenital heart disease. Heart Fail. Clin. 10, 207–218 (2014).

    Article  PubMed  Google Scholar 

  126. Farooqi, K. M. et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail. 4, 301–311 (2016).

    Article  PubMed  Google Scholar 

  127. Dos, L. et al. Late outcome of Senning and Mustard procedures for correction of transposition of the great arteries. Heart 91, 652–656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hornung, T. S., Benson, L. N. & McLaughlin, P. R. Catheter interventions in adult patients with congenital heart disease. Curr. Cardiol. Rep. 4, 54–62 (2002).

    Article  PubMed  Google Scholar 

  129. Salloum, C. et al. Fusion of information from 3D printing and surgical robot: an innovative minimally technique illustrated by the resection of a large celiac trunk aneurysm. World J. Surg. 40, 245–247 (2016).

    Article  PubMed  Google Scholar 

  130. Golesworthy, T. et al. The tailor of Gloucester: a jacket for the Marfan's aorta. Lancet 364, 1582 (2004).

    Article  PubMed  Google Scholar 

  131. Pepper, J. et al. Manufacturing and placing a bespoke support for the Marfan aortic root: description of the method and technical results and status at one year for the first ten patients. Interact. Cardiovasc. Thorac. Surg. 10, 360–365 (2010).

    Article  PubMed  Google Scholar 

  132. Treasure, T. Personalized external aortic root support. Tex. Heart Inst. J. 40, 549–552 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Treasure, T. et al. Personalised external aortic root support (PEARS) in Marfan syndrome: analysis of 1–9 year outcomes by intention-to-treat in a cohort of the first 30 consecutive patients to receive a novel tissue and valve-conserving procedure, compared with the published results of aortic root replacement. Heart 100, 969–975 (2014).

    Article  PubMed  Google Scholar 

  134. Valverde, I. et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter. Cardiovasc. Interv. 85, 1006–1012 (2015).

    Article  PubMed  Google Scholar 

  135. Schmauss, D. et al. Three-dimensional printing for perioperative planning of complex aortic arch surgery. Ann. Thorac. Surg. 97, 2160–2163 (2014).

    Article  PubMed  Google Scholar 

  136. Sodian, R. et al. 3-Dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann. Thorac. Surg. 88, 974–978 (2009).

    Article  PubMed  Google Scholar 

  137. Tam, M. D., Laycock, S. D., Brown, J. R. & Jakeways, M. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J. Endovasc. Ther. 20, 863–867 (2013).

    Article  PubMed  Google Scholar 

  138. Leotta, D. F. & Starnes, B. W. Custom fenestration templates for endovascular repair of juxtarenal aortic aneurysms. J. Vasc. Surg. 61, 1637–1641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Thabit, O. & Yoo, S.-J. Rapid Prototyping of cardiac models: current utilization and future directions. J. Cardiovasc. Magn. Reson. 14, T13 (2012).

    Article  PubMed Central  Google Scholar 

  140. Lim, K. H., Loo, Z. Y., Goldie, S. J., Adams, J. W. & McMenamin, P. G. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat. Sci. Educ. 9, 213–221 (2015).

    Article  PubMed  Google Scholar 

  141. Fasel, J. H. et al. Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg. Radiol. Anat. 38, 361–367 (2016).

    Article  PubMed  Google Scholar 

  142. Torres, K., Staskiewicz, G., Sniezynski, M., Drop, A. & Maciejewski, R. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education. Folia Morphol. 70, 1–4 (2011).

    CAS  Google Scholar 

  143. Wilasrusmee, C. et al. Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int. J. Angiol. 17, 129–133 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kim, G. B. et al. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J. Radiol. 17, 182–197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Biglino, G., Capelli, C., Taylor, A. M. & Schievano, S. in New Trends in 3D Printing Ch. 6 (ed. Shishkovsky, I.) (InTech, 2016).

    Google Scholar 

  146. Wood, R. P. et al. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography. Proc. SPIE Int. Soc. Opt. Eng. 9417, 94170V (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Wang, H. et al. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies. Sci. Rep. 5, 10945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Beier, S. et al. Dynamically scaled phantom phase contrast MRI compared to true-scale computational modeling of coronary artery flow. J. Magn. Reson. Imaging 44, 983–992 (2016).

    Article  PubMed  Google Scholar 

  149. Antoniadis, A. P. et al. Biomechanical modeling to improve coronary artery bifurcation stenting: expert review document on techniques and clinical implementation. JACC Cardiovasc. Interv. 8, 1281–1296 (2015).

    Article  PubMed  Google Scholar 

  150. Birjiniuk, J. et al. Development and testing of a silicone in vitro model of descending aortic dissection. J. Surg. Res. 198, 502–507 (2015).

    Article  PubMed  Google Scholar 

  151. Veeraswamy, R. K. et al. Phase-contrast magnetic resonance imaging reveals novel fluid dynamics in a patient-derived silicone model of descending thoracic aortic dissection. J. Vasc. Surg. 61, 128s–129s (2015).

    Article  Google Scholar 

  152. Biglino, G., Verschueren, P., Zegels, R., Taylor, A. M. & Schievano, S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J. Cardiovasc. Magn. Reson. 15, 2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sulaiman, A. et al. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur. J. Cardiothorac. Surg. 33, 53–57 (2008).

    Article  PubMed  Google Scholar 

  154. Sulaiman, A. et al. In vitro, nonrigid model of aortic arch aneurysm. J. Vasc. Interv. Radiol. 19, 919–924 (2008).

    Article  PubMed  Google Scholar 

  155. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Mosadegh, B., Xiong, G., Dunham, S. & Min, J. K. Current progress in 3D printing for cardiovascular tissue engineering. Biomed. Mater. 10, 034002 (2015).

    Article  PubMed  CAS  Google Scholar 

  157. Seol, Y. J., Kang, H. W., Lee, S. J., Atala, A. & Yoo, J. J. Bioprinting technology and its applications. Eur. J. Cardiothorac. Surg. 46, 342–348 (2014).

    Article  PubMed  Google Scholar 

  158. Hutmacher, D. W., Sittinger, M. & Risbud, M. V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22, 354–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Cai, T. et al. The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Print. Med. 1, 2 (2015).

    Article  PubMed  Google Scholar 

  160. Cai, T. et al. Accuracy of 3D printed models of the aortic valve complex for transcatheter aortic valve replacement (TAVR) planning: comparison to computed tomographic angiography (CTA). Circulation 132, A14658 (2015).

    Google Scholar 

  161. Tandon, A. et al. Use of a semi-automated cardiac segmentation tool improves reproducibility and speed of segmentation of contaminated right heart magnetic resonance angiography. Int. J. Cardiovasc. Imaging 32, 1273–1279 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Anderson, J. R. et al. A semi-automated image segmentation approach for computational fluid dynamics studies of aortic dissection. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 4727–4730 (2014).

    Google Scholar 

  163. Salmi, M., Paloheimo, K. S., Tuomi, J., Wolff, J. & Makitie, A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Craniomaxillofac Surg. 41, 603–609 (2013).

    Article  PubMed  Google Scholar 

  164. Ogden, K. M. et al. Factors affecting dimensional accuracy of 3D printed anatomical structures derived from CT data. J. Digit. Imaging 28, 654–663 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wang, K. et al. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater. Design 90, 704–712 (2016).

    Article  CAS  Google Scholar 

  166. Daher, N. Why 2016 may be the year medical 3D printing crosses the chasm. Frost http://www.frost.com/sublib/display-market-insight.do?id=296427084 (2016).

    Google Scholar 

  167. Markl, M., Schumacher, R., Kuffer, J., Bley, T. A. & Hennig, J. Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology. MAGMA 18, 288–292 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Creative assistance for the preparation of Figure 1 was provided by Todd Pietila and Materialise (Leuven, Belgium).

Author information

Authors and Affiliations

Authors

Contributions

A.A.G. and F.J.R. researched the literature, wrote, and edited the manuscript. D.M., S.-J.Y., P.P.L. and Y.S.C. discussed the content and reviewed and edited the manuscript before submission. The final version of the manuscript was approved by all the authors.

Corresponding author

Correspondence to Frank J. Rybicki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannopoulos, A., Mitsouras, D., Yoo, SJ. et al. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13, 701–718 (2016). https://doi.org/10.1038/nrcardio.2016.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing