Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stroke risk assessment in atrial fibrillation: risk factors and markers of atrial myopathy

Key Points

  • The mechanisms of stroke in atrial fibrillation are not well understood; fibrotic atrial tissue might directly mediate thromboembolism in stroke, independent of the atrial rhythm

  • Current stroke risk scores for atrial fibrillation are suboptimal predictors of stroke

  • Novel clinical risk factors, serum biomarkers, and imaging findings of atrial pathology are associated with increased risk of embolic stroke

  • Identification of novel markers might be useful in weighing the risks and benefits of anticoagulation in patients who are categorized at low or intermediate risk by standard risk scores

  • A subset of patients at high risk of stroke might benefit from anticoagulation even in the absence of atrial fibrillation

Abstract

Atrial fibrillation (AF) is a complex phenomenon associated with electrical, mechanical, and structural abnormalities of the atria. Ischaemic stroke in AF is only partially understood, but the mechanisms are known to be related to the atrial substrate as well as the atrial rhythm. The temporal dissociation between timing of AF and occurrence of stroke has led to the hypothesis that fibrotic, prothrombotic atrial tissue is an important cause of thrombus formation in patients with AF, independent of the atrial rhythm. Current stroke risk scores are practical, but limited in their capacity to predict stroke risk accurately in individual patients. Stroke prediction might be improved by the addition of emerging risk factors, many of which are expressions of atrial fibrosis. The use of novel parameters, including clinical criteria, biomarkers, and imaging data, might improve stroke risk prediction and inform on optimal treatment for patients with AF and perhaps individuals only at risk of AF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Novel markers of increased stroke risk in AF.
Figure 2: Theoretical schema of the role of novel mediators of thromboembolism.
Figure 3: Comparison of annual risk of stroke in major studies according to CHA2DS2-VASc scores.
Figure 4: Unique and shared risk factors for bleeding and stroke.
Figure 5: Proposed algorithm for stroke risk assessment in atrial fibrillation (AF).

Similar content being viewed by others

References

  1. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64, e1–e76 (2014).

    Article  PubMed  Google Scholar 

  2. Camm, A. J. et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed With Special contribution of the European Heart Rhythm Association. Eur. Heart J. 33, 2719–2747 (2012).

    Article  PubMed  Google Scholar 

  3. Keogh, C., Wallace, E., Dillon, C., Dimitrov, B. D. & Fahey, T. Validation of the CHADS2 clinical prediction rule to predict ischaemic stroke. A systematic review and meta-analysis. Thromb. Haemost. 106, 528–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Singer, D. E. et al. A new risk scheme to predict ischemic stroke and other thromboembolism in atrial fibrillation: the ATRIA study stroke risk score. J. Am. Heart Assoc. 2, e000250 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. van den Ham, H. A., Klungel, O. H., Singer, D. E., Leufkens, H. G. & van Staa, T. P. Comparative performance of ATRIA, CHADS2, and CHA2DS2-VASc risk scores predicting stroke in patients with atrial fibrillation: results from a National Primary Care Database. J. Am. Coll. Cardiol. 66, 1851–1859 (2015).

    Article  PubMed  Google Scholar 

  6. Kottkamp, H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur. Heart J. 34, 2731–2738 (2013).

    Article  PubMed  Google Scholar 

  7. Kottkamp, H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J. Cardiovasc. Electrophysiol. 23, 797–799 (2012).

    Article  PubMed  Google Scholar 

  8. Benjamin, E. J., D'Agostino, R. B., Belanger, A. J., Wolf, P. A. & Levy, D. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation 92, 835–841 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Abhayaratna, W. P. et al. Left atrial size: physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 47, 2357–2363 (2006).

    Article  PubMed  Google Scholar 

  10. Kuppahally, S. S. et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ. Cardiovasc. Imaging 3, 231–239 (2010).

    Article  PubMed  Google Scholar 

  11. Saha, S. K. et al. Global left atrial strain correlates with CHADS2 risk score in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 24, 506–512 (2011).

    Article  PubMed  Google Scholar 

  12. Daccarett, M. et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J. Am. Coll. Cardiol. 57, 831–838 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boriani, G. et al. Device-detected atrial fibrillation and risk for stroke: an analysis of >10 000 patients from the SOS AF project (Stroke preventiOn Strategies based on Atrial Fibrillation information from implanted devices). Eur. Heart J. 35, 508–516 (2014).

    Article  PubMed  Google Scholar 

  14. Turakhia, M. P. et al. Atrial fibrillation burden and short-term risk of stroke: case-crossover analysis of continuously recorded heart rhythm from cardiac electronic implanted devices. Circ. Arrhythm. Electrophysiol. 8, 1040–1047 (2015).

    Article  PubMed  Google Scholar 

  15. Hijazi, Z. et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation 125, 1605–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Hijazi, Z. et al. Biomarkers of inflammation and risk of cardiovascular events in anticoagulated patients with atrial fibrillation. Heart http://dx.doi.org/10.1136/heartjnl-2015-308887 (2016).

  17. Hijazi, Z. et al. High-sensitivity troponin I for risk assessment in patients with atrial fibrillation: insights from the Apixaban for Reduction in Stroke and other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation 129, 625–634 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Hijazi, Z. et al. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE Trial (Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation). J. Am. Coll. Cardiol. 61, 2274–2284 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Hijazi, Z. et al. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 37, 1582–1590 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Holmes, D. R. Jr et al. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J. Am. Coll. Cardiol. 64, 1–12 (2014).

    Article  PubMed  Google Scholar 

  21. Holmes, D. R. et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet 374, 534–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Corradi, D. Atrial fibrillation from the pathologist's perspective. Cardiovasc. Pathol. 23, 71–84 (2014).

    Article  PubMed  Google Scholar 

  23. Corradi, D., Callegari, S., Maestri, R., Benussi, S. & Alfieri, O. Structural remodeling in atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 5, 782–796 (2008).

    Article  PubMed  Google Scholar 

  24. Mahida, S. Genetic discoveries in atrial fibrillation and implications for clinical practice. Arrhythm. Electrophysiol. Rev. 3, 69–75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balouch, M. A., Kolek, M. J. & Darbar, D. Improved understanding of the pathophysiology of atrial fibrillation through the lens of discrete pathological pathways. Glob. Cardiol. Sci. Pract. 2014, 24–36 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Al-Khatib, S. M. et al. Rate- and rhythm-control therapies in patients with atrial fibrillation: a systematic review. Ann. Intern. Med. 160, 760–773 (2014).

    Article  PubMed  Google Scholar 

  27. Healey, J. S. et al. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366, 120–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, D. T. et al. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur. Heart J. 36, 1660–1668 (2015).

    Article  PubMed  Google Scholar 

  29. Lip, G. Y., Nieuwlaat, R., Pisters, R., Lane, D. A. & Crijns, H. J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137, 263–272 (2010).

    Article  PubMed  Google Scholar 

  30. Chao, T. F. et al. Using the CHA2DS2-VASc score for refining stroke risk stratification in 'low-risk' Asian patients with atrial fibrillation. J. Am. Coll. Cardiol. 64, 1658–1665 (2014).

    Article  PubMed  Google Scholar 

  31. Lip, G. Y. et al. The value of the European society of cardiology guidelines for refining stroke risk stratification in patients with atrial fibrillation categorized as low risk using the anticoagulation and risk factors in atrial fibrillation stroke score: a nationwide cohort study. Chest 146, 1337–1346 (2014).

    Article  PubMed  Google Scholar 

  32. Taillandier, S. et al. Prognosis in patients with atrial fibrillation and CHA2DS2-VASc Score = 0 in a community-based cohort study. J. Cardiovasc. Electrophysiol. 23, 708–713 (2012).

    Article  PubMed  Google Scholar 

  33. Potpara, T. S. et al. Reliable identification of 'truly low' thromboembolic risk in patients initially diagnosed with 'lone' atrial fibrillation: the Belgrade atrial fibrillation study. Circ. Arrhythm. Electrophysiol. 5, 319–326 (2012).

    Article  PubMed  Google Scholar 

  34. Friberg, L., Skeppholm, M. & Terent, A. Benefit of anticoagulation unlikely in patients with atrial fibrillation and a CHA2DS2-VASc score of 1. J. Am. Coll. Cardiol. 65, 225–232 (2015).

    Article  PubMed  Google Scholar 

  35. Olesen, J. B. et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: nationwide cohort study. BMJ 342, d124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lip, G. Y., Skjoth, F., Nielsen, P. B. & Larsen, T. B. Non-valvular atrial fibrillation patients with none or one additional risk factor of the CHA2DS2-VASc score. A comprehensive net clinical benefit analysis for warfarin, aspirin, or no therapy. Thromb. Haemost. 114, 826–834 (2015).

    Article  PubMed  Google Scholar 

  37. Olesen, J. B. & Torp-Pedersen, C. Stroke risk in atrial fibrillation: do we anticoagulate CHADS2 or CHA2DS2-VASc ≥1, or higher? Thromb. Haemost. 113, 1165–1169 (2015).

    Article  PubMed  Google Scholar 

  38. Giugliano, R. P. et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 369, 2093–2104 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Marcucci, M. et al. Stroke and bleeding risk co-distribution in real-world patients with atrial fibrillation: the Euro Heart Survey. Am. J. Med. 127, 979–986.e2 (2014).

    Article  PubMed  Google Scholar 

  42. Olesen, J. B. et al. Risks of thromboembolism and bleeding with thromboprophylaxis in patients with atrial fibrillation: a net clinical benefit analysis using a 'real world' nationwide cohort study. Thromb. Haemost. 106, 739–749 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Friberg, L., Rosenqvist, M. & Lip, G. Y. Net clinical benefit of warfarin in patients with atrial fibrillation: a report from the Swedish atrial fibrillation cohort study. Circulation 125, 2298–2307 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Glotzer, T. V. et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ. Arrhythm. Electrophysiol. 2, 474–480 (2009).

    Article  PubMed  Google Scholar 

  45. Suzuki, T. et al. Echocardiographic predictors of frequency of paroxysmal atrial fibrillation (AF) and its progression to persistent AF in hypertensive patients with paroxysmal AF: results from the Japanese Rhythm Management Trial II for Atrial Fibrillation (J-RHYTHM II Study). Heart Rhythm 8, 1831–1836 (2011).

    Article  PubMed  Google Scholar 

  46. Marrouche, N. F. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311, 498–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Ganesan, A. N. et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: a systematic review and meta-analysis. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehw007 (2016).

  48. Steinberg, B. A. et al. Higher risk of death and stroke in patients with persistent versus paroxysmal atrial fibrillation: results from the ROCKET-AF Trial. Eur. Heart J. 36, 288–296 (2015).

    Article  PubMed  Google Scholar 

  49. Vanassche, T. et al. Risk of ischaemic stroke according to pattern of atrial fibrillation: analysis of 6563 aspirin-treated patients in ACTIVE-A and AVERROES. Eur. Heart J. 36, 281–288 (2015).

    Article  PubMed  Google Scholar 

  50. Senoo, K., Lip, G. Y., Lane, D. A., Buller, H. R. & Kotecha, D. Residual risk of stroke and death in anticoagulated patients according to the type of atrial fibrillation: AMADEUS Trial. Stroke 46, 2523–2528 (2015).

    Article  PubMed  Google Scholar 

  51. Szymanski, F. M. et al. Obstructive sleep apnoea in patients with atrial fibrillation: prevalence, determinants and clinical characteristics of patients in Polish population. Kardiol. Pol. 72, 716–724 (2014).

    Article  PubMed  Google Scholar 

  52. Marin, J. M., Carrizo, S. J., Vicente, E. & Agusti, A. G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365, 1046–1053 (2005).

    Article  PubMed  Google Scholar 

  53. Yaranov, D. M. et al. Effect of obstructive sleep apnea on frequency of stroke in patients with atrial fibrillation. Am. J. Cardiol. 115, 461–465 (2015).

    Article  PubMed  Google Scholar 

  54. Chang, C. C. et al. Obstructive sleep apnea and the risk of ischemic stroke in patients with atrial fibrillation. Int. J. Cardiol. 181, 144–146 (2015).

    Article  PubMed  Google Scholar 

  55. Roldan, V. et al. Does chronic kidney disease improve the predictive value of the CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation? Thromb. Haemost. 109, 956–960 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Piccini, J. P. et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R2CHADS2 index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation 127, 224–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Hohnloser, S. H. et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur. Heart J. 33, 2821–2830 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, W. Y. et al. Impact of renal dysfunction on clinical outcome in patients with low risk of atrial fibrillation. Circ. J. 78, 853–858 (2014).

    Article  PubMed  Google Scholar 

  59. Wiese, S. et al. Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102, 3074–3079 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Yoshioka, K. et al. A score for predicting paroxysmal atrial fibrillation in acute stroke patients: iPAB score. J. Stroke Cerebrovasc. Dis. 24, 2263–2269 (2015).

    Article  PubMed  Google Scholar 

  61. Shibazaki, K. et al. Brain natriuretic peptide level on admission predicts recurrent stroke after discharge in stroke survivors with atrial fibrillation. Clin. Neurol. Neurosurg. 127, 25–29 (2014).

    Article  PubMed  Google Scholar 

  62. The Stroke Prevention Atrial Fibrillation Investigators. Predictors of thromboembolism in atrial fibrillation: II. Echocardiographic features of patients at risk. Ann. Intern. Med. 116, 6–12 (1992).

  63. Ayirala, S., Kumar, S., O'Sullivan, D. M. & Silverman, D. I. Echocardiographic predictors of left atrial appendage thrombus formation. J. Am. Soc. Echocardiogr. 24, 499–505 (2011).

    Article  PubMed  Google Scholar 

  64. Faustino, A. et al. Which method of left atrium size quantification is the most accurate to recognize thromboembolic risk in patients with non-valvular atrial fibrillation? Cardiovasc. Ultrasound 12, 28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Osranek, M. et al. Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: three-decade follow-up. Eur. Heart J. 26, 2556–2561 (2005).

    Article  PubMed  Google Scholar 

  66. Barnes, M. E. et al. Left atrial volume in the prediction of first ischemic stroke in an elderly cohort without atrial fibrillation. Mayo Clin. Proc. 79, 1008–1014 (2004).

    Article  PubMed  Google Scholar 

  67. Shih, J. Y. et al. Association of decreased left atrial strain and strain rate with stroke in chronic atrial fibrillation. J. Am. Soc. Echocardiogr. 24, 513–519 (2011).

    Article  PubMed  Google Scholar 

  68. Watanabe, A. et al. Left atrial remodeling assessed by transthoracic echocardiography predicts left atrial appendage flow velocity in patients with paroxysmal atrial fibrillation. Int. Heart J. 57, 177–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Bayar, N. et al. Evaluation of the association between stroke/transient ischemic attack and atrial electromechanical delay in patients with paroxysmal atrial fibrillation. Anatol. J. Cardiol. http://dx.doi.org/10.5152/AnatolJCardiol.2015.6424 (2015).

  70. Savelieva, I., Bajpai, A. & Camm, A. J. Stroke in atrial fibrillation: update on pathophysiology, new antithrombotic therapies, and evolution of procedures and devices. Ann. Med. 39, 371–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Di Biase, L. et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J. Am. Coll. Cardiol. 60, 531–538 (2012).

    Article  PubMed  Google Scholar 

  72. Khurram, I. M. et al. Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm 10, 1843–1849 (2013).

    Article  PubMed  Google Scholar 

  73. Goldman, M. E. et al. Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity in the left atrial appendage (The Stroke Prevention in Atrial Fibrillation [SPAF-III] study). J. Am. Soc. Echocardiogr. 12, 1080–1087 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Hirsh, B. J., Copeland-Halperin, R. S. & Halperin, J. L. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: mechanistic links and clinical inferences. J. Am. Coll. Cardiol. 65, 2239–2251 (2015).

    Article  PubMed  Google Scholar 

  75. Woods, C. E. & Olgin, J. Atrial fibrillation therapy now and in the future: drugs, biologicals, and ablation. Circ. Res. 114, 1532–1546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sanna, T. et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 370, 2478–2486 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Binici, Z., Intzilakis, T., Nielsen, O. W., Kober, L. & Sajadieh, A. Excessive supraventricular ectopic activity and increased risk of atrial fibrillation and stroke. Circulation 121, 1904–1911 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Chong, B. H. et al. Frequent premature atrial complexes predict new occurrence of atrial fibrillation and adverse cardiovascular events. Europace 14, 942–947 (2012).

    Article  PubMed  Google Scholar 

  79. Dewland, T. A. et al. Atrial ectopy as a predictor of incident atrial fibrillation: a cohort study. Ann. Intern. Med. 159, 721–728 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lin, C. Y. et al. Prognostic significance of premature atrial complexes burden in prediction of long-term outcome. J. Am. Heart Assoc. 4, e002192 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Larsen, B. S., Kumarathurai, P., Falkenberg, J., Nielsen, O. W. & Sajadieh, A. Excessive atrial ectopy and short atrial runs increase the risk of stroke beyond incident atrial fibrillation. J. Am. Coll. Cardiol. 66, 232–241 (2015).

    Article  PubMed  Google Scholar 

  82. Kamel, H. et al. Paroxysmal supraventricular tachycardia and the risk of ischemic stroke. Stroke 44, 1550–1554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brembilla-Perrot, B. & Delobelle, J. Prevalence of stroke among patients with paroxysmal supraventricular tachycardia. Pacing Clin. Electrophysiol. 36, 180–186 (2013).

    Article  PubMed  Google Scholar 

  84. Mahabadi, A. A. et al. Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: the Heinz Nixdorf Recall Study. Eur. Heart J. Cardiovasc. Imaging 15, 863–869 (2014).

    Article  PubMed  Google Scholar 

  85. Qureshi, W. et al. Risk factors for atrial fibrillation in patients with normal versus dilated left atrium (from the Atherosclerosis Risk in Communities Study). Am. J. Cardiol. 114, 1368–1372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hirose, T. et al. Left atrial function assessed by speckle tracking echocardiography as a predictor of new-onset non-valvular atrial fibrillation: results from a prospective study in 580 adults. Eur. Heart J. Cardiovasc. Imaging 13, 243–250 (2012).

    Article  PubMed  Google Scholar 

  87. Abed, H. S. et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 310, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Melgaard, L. et al. Assessment of the CHA2DS2-VASc score in predicting ischemic stroke, thromboembolism, and death in patients with heart failure with and without atrial fibrillation. JAMA 314, 1030–1038 (2015).

    Article  PubMed  CAS  Google Scholar 

  89. Holmes, D. R. Jr et al. Left atrial appendage closure as an alternative to warfarin for stroke prevention in atrial fibrillation: a patient-level meta-analysis. J. Am. Coll. Cardiol. 65, 2614–2623 (2015).

    Article  PubMed  Google Scholar 

  90. Warraich, H. J., Gandhavadi, M. & Manning, W. J. Mechanical discordance of the left atrium and appendage: a novel mechanism of stroke in paroxysmal atrial fibrillation. Stroke 45, 1481–1484 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Martin E. Goldman (The Mount Sinai Hospital, New York, USA) for inspiring the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.W.C. researched data for the article and wrote the manuscript. All the authors discussed the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Brandon W. Calenda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calenda, B., Fuster, V., Halperin, J. et al. Stroke risk assessment in atrial fibrillation: risk factors and markers of atrial myopathy. Nat Rev Cardiol 13, 549–559 (2016). https://doi.org/10.1038/nrcardio.2016.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing