Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac MRI: a central prognostic tool in myocardial fibrosis

Key Points

  • Contrast-enhanced MRI is a noninvasive, clinically useful technique for accurate quantification and localization of myocardial fibrotic burden

  • Late-gadolinium enhancement imaging can be used to identify the presence, pattern, and size of replacement or focal fibrosis, and has proven prognostic capacity

  • T1 mapping allows for the accurate quantitation of diffuse and infiltrative interstitial fibrosis, and has tremendous prognostic potential in a wide variety of ischaemic and nonischaemic diseases

  • Additional studies are needed to further define the prognostic relevance of late-gadolinium enhancement, T1 mapping, or both techniques used simultaneously, across different pathologies

Abstract

Fibrotic remodelling of the extracellular matrix is a healing mechanism necessary immediately after myocardial injury. However, prolonged increase in myocardial fibrotic activity results in stiffening of the myocardium and heralds adverse outcomes related to systolic and diastolic dysfunction, as well as arrhythmogenesis. Cardiac MRI provides a noninvasive phenotyping tool for accurate and easy detection and quantification of myocardial fibrosis by probing the retention of gadolinium-contrast agent in myocardial tissue. Late-gadolinium enhancement (LGE) cardiac MRI has been used extensively in a large number of studies for measurement of myocardial scarring. T1 mapping, a fairly new technique that can be used to identify the exact T1 value of the tissue, provides a direct measurement of the extracellular volume fraction of the myocardium. In contrast to LGE, T1 mapping can be used to measure diffuse myocardial fibrosis and differentiate between disease processes. In this Review, we describe the basic principles of imaging myocardial fibrosis using contrast-enhanced MRI and summarize its use for prognostic purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gadolinium-contrast uptake and retention in differing fibrotic conditions in the myocardium.
Figure 2: Macroscopic and microscopic fibrosis as seen in various pathologies.
Figure 3: Agreement between LGE and ECV in cases of focal abnormalities in myocardial ECV.
Figure 4: Challenges in assessing diffuse abnormalities in myocardial ECV with conventional LGE.

Similar content being viewed by others

References

  1. Weber, K. T., Sun, Y., Bhattacharya, S. K., Ahokas, R. A. & Gerling, I. C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10, 15–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71, 549–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Mewton, N., Liu, C. Y., Croisille, P., Bluemke, D. & Lima, J. A. C. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 57, 891–903 (2011).

    Article  PubMed  Google Scholar 

  4. Anversa, P., Hiler, B., Ricci, R., Guideri, G. & Olivetti, G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J. Am. Coll. Cardiol. 8, 1441–1448 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Anversa, P. & Nadal-Ginard, B. Myocyte renewal and ventricular remodelling. Nature 415, 240–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Weber, K. T., Brilla, C. G. & Janicki, J. S. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc. Res. 27, 341–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Weber, K. T. & Brilla, C. G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83, 1849–1865 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Deichmann, R. & Hasse, A. Quantification of T1 values by snapshot-flash NMR imaging. J. Magn. Reson. 96, 608–612 (1992).

    CAS  Google Scholar 

  9. Judd, R. M., Atalay, M. K., Rottman, G. A. & Zerhouni, E. A. Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn. Reson. Med. 33, 215–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Manning, W. J., Atkinson, D. J., Grossman, W., Paulin, S. & Edelman, R. R. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J. Am. Coll. Cardiol. 18, 959–965 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Goldfarb, J. W., Arnold, S. & Roth, M. Gadolinium pharmacokinetics of chronic myocardial infarcts: Implications for late gadolinium-enhanced infarct imaging. J. Magn. Reson. Imaging 30, 763–770 (2009).

    Article  PubMed  Google Scholar 

  12. Klein, C. et al. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J. Cardiovasc. Magn. Reson. 9, 653–658 (2007).

    Article  PubMed  Google Scholar 

  13. Jerosch-Herold, M., Sheridan, D. & Kushner, J. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 295, H1234–H1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, R. J., Chen, E. L., Lima, J. A. C. & Judd, R. M. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94, 3318–3326 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Simonetti, O. P. et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218, 215–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Huber, A. et al. Determining myocardial viability in myocardial infarct. Comparison of single and multisclice MRI techniques with TurboFlash and TrueFISP sequences [German]. Radiologe 44, 146–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Kellman, P., Arai, A. E., McVeigh, E. R. & Aletras, A. H. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn. Reson. Med. 47, 372–383 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wagner, A. et al. Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J. Am. Coll. Cardiol. 47, 2027–2033 (2006).

    Article  PubMed  Google Scholar 

  19. Kim, R. J. et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117, 629–637 (2008).

    Article  PubMed  Google Scholar 

  20. Kwong, R. Y. & Farzaneh-Far, A. Measuring myocardial scar by CMR. JACC Cardiovasc. Imaging 4, 157–160 (2011).

    Article  PubMed  Google Scholar 

  21. Judd, R. M. et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92, 1902–1910 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lima, J. A. et al. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92, 1117–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Amado, L. C. et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J. Am. Coll. Cardiol. 44, 2383–2389 (2004).

    Article  PubMed  Google Scholar 

  24. Flett, A. S. et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc. Imaging 4, 150–156 (2011).

    Article  PubMed  Google Scholar 

  25. Spiewak, M. et al. Comparison of different quantification methods of late gadolinium enhancement in patients with hypertrophic cardiomyopathy. Eur. J. Radiol. 74, e149–e153 (2010).

    Article  PubMed  Google Scholar 

  26. White, S. K., Flett, A. S. & Moon, J. C. Automated scar quantification by CMR: a step in the right direction. J. Thorac. Dis. 5, 381–382 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Kramer, C. M., Barkhausen, J., Flamm, S. D., Kim, R. J. & Nagel, E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J. Cardiovasc. Magn. Reson. 15, 91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hundley, W. G. et al. Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations. J. Cardiovasc. Magn. Reson. 11, 5 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schulz-Menger, J. et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J. Cardiovasc. Magn. Reson. 15, 35 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, E. et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357, 21–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Azevedo, C. F. et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J. Am. Coll. Cardiol. 56, 278–287 (2010).

    Article  PubMed  Google Scholar 

  32. Moon, J. C. C. et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 43, 2260–2264 (2004).

    Article  PubMed  Google Scholar 

  33. Kim, R. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445–1453 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, R. et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100, 1992–2002 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Wagner, A. et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361, 374–379 (2003).

    Article  PubMed  Google Scholar 

  36. Shah, D. J. et al. Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA 309, 909–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, K. M. et al. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104, 1101–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Gerber, B. L. et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J. Am. Coll. Cardiol. 59, 825–835 (2012).

    Article  PubMed  Google Scholar 

  39. Romero, J., Xue, X., Gonzalez, W. & Garcia, M. J. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc. Imaging 5, 494–508 (2012).

    Article  PubMed  Google Scholar 

  40. Kelle, S. et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J. Am. Coll. Cardiol. 54, 1770–1777 (2009).

    Article  PubMed  Google Scholar 

  41. Roes, S. D. et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am. J. Cardiol. 100, 930–936 (2007).

    Article  PubMed  Google Scholar 

  42. Krittayaphong, R., Saiviroonporn, P., Boonyasirinant, T. & Udompunturak, S. Prevalence and prognosis of myocardial scar in patients with known or suspected coronary artery disease and normal wall motion. J. Cardiovasc. Magn. Reson. 13, 2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kwong, R. et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113, 2733–2743 (2006).

    Article  PubMed  Google Scholar 

  44. Bello, D. et al. Cardiac magnetic resonance imaging: infarct size is an independent predictor of mortality in patients with coronary artery disease. Magn. Reson. Imaging 29, 50–56 (2011).

    Article  PubMed  Google Scholar 

  45. Tarantini, G. et al. Duration of ischemia is a major determinant of transmurality and severe microvascular obstruction after primary angioplasty: a study performed with contrast-enhanced magnetic resonance. J. Am. Coll. Cardiol. 46, 1229–1235 (2005).

    Article  PubMed  Google Scholar 

  46. Francone, M. et al. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 54, 2145–2153 (2009).

    Article  PubMed  Google Scholar 

  47. Ingkanisorn, W. P., Rhoads, K. L., Aletras, A. H., Kellman, P. & Arai, A. E. Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J. Am. Coll. Cardiol. 43, 2253–2259 (2004).

    Article  PubMed  Google Scholar 

  48. Baks, T. et al. Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. J. Am. Coll. Cardiol. 47, 40–44 (2006).

    Article  PubMed  Google Scholar 

  49. Larose, E. et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 55, 2459–2469 (2010).

    Article  PubMed  Google Scholar 

  50. Wu, K. C. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97, 765–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Hadamitzky, M. et al. Prognostic value of late gadolinium enhancement in cardiovascular magnetic resonance imaging after acute ST-elevation myocardial infarction in comparison with single-photon emission tomography using Tc99m-Sestamibi. Eur. Heart J. Cardiovasc. Imaging 15, 216–225 (2014).

    Article  PubMed  Google Scholar 

  52. Cochet, A. A. et al. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction. Eur. Radiol. 19, 2117–2126 (2009).

    Article  PubMed  Google Scholar 

  53. de Waha, S. et al. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur. Heart J. 31, 2660–2668 (2010).

    Article  PubMed  Google Scholar 

  54. Steel, K. et al. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation 120, 1390–1400 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eitel, I. et al. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J. Am. Coll. Cardiol. 55, 2470–2479 (2010).

    Article  PubMed  Google Scholar 

  56. Schmidt, A. et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115, 2006–2014 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bello, D. et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. Coll. Cardiol. 45, 1104–1108 (2005).

    Article  PubMed  Google Scholar 

  58. Roes, S. D. et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ. Cardiovasc. Imaging 2, 183–190 (2009).

    Article  PubMed  Google Scholar 

  59. Scott, P. A. et al. The extent of left ventricular scar quantified by late gadolinium enhancement MRI is associated with spontaneous ventricular arrhythmias in patients with coronary artery disease and implantable cardioverter-defibrillators. Circ. Arrhythm. Electrophysiol. 4, 324–330 (2011).

    Article  PubMed  Google Scholar 

  60. Yan, A. T. et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114, 32–39 (2006).

    Article  PubMed  Google Scholar 

  61. McCrohon, J. A. et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108, 54–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Mahrholdt, H., Wagner, A., Judd, R. M., Sechtem, U. & Kim, R. J. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur. Heart J. 26, 1461–1474 (2005).

    Article  PubMed  Google Scholar 

  63. Lehrke, S. et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97, 727–732 (2011).

    Article  PubMed  Google Scholar 

  64. Wu, K. C. et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 51, 2414–2421 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Perazzolo Marra, M. et al. Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm. 11, 856–863 (2014).

    Article  PubMed  Google Scholar 

  66. Iles, L. et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J. Am. Coll. Cardiol. 57, 821–828 (2011).

    Article  PubMed  Google Scholar 

  67. Moon, J. C. et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart 91, 1036–1040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwon, D. H. et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J. Am. Coll. Cardiol. 54, 242–249 (2009).

    Article  PubMed  Google Scholar 

  69. Bruder, O. et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56, 875–887 (2010).

    Article  PubMed  Google Scholar 

  70. O'Hanlon, R. et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56, 867–874 (2010).

    Article  PubMed  Google Scholar 

  71. Adabag, A. S. et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 51, 1369–1374 (2008).

    Article  PubMed  Google Scholar 

  72. Rubinshtein, R. et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ. Heart Fail. 3, 51–58 (2010).

    Article  PubMed  Google Scholar 

  73. Green, J. J., Berger, J. S., Kramer, C. M. & Salerno, M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging 5, 370–377 (2012).

    Article  PubMed  Google Scholar 

  74. Ismail, T. F. et al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart http://dx.doi.org/10.1136/heartjnl-2013-305471.

  75. Austin, B. A. et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc. Imaging 2, 1369–1377 (2009).

    Article  PubMed  Google Scholar 

  76. Maceira, A. M., Prasad, S. K., Hawkins, P. N., Roughton, M. & Pennell, D. J. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J. Cardiovasc. Magn. Reson. 10, 54 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ruberg, F. L. et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am. J. Cardiol. 103, 544–549 (2009).

    Article  PubMed  Google Scholar 

  78. Rochitte, C. E. et al. Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas' disease: a marker of disease severity. J. Am. Coll. Cardiol. 46, 1553–1558 (2005).

    Article  PubMed  Google Scholar 

  79. Schumm, J. et al. Cardiovascular magnetic resonance risk stratification in patients with clinically suspected myocarditis. J. Cardiovasc. Magn. Reson. 16, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ferreira, V. M. et al. T1 mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc. Imaging 6, 1048–1058 (2013).

    Article  PubMed  Google Scholar 

  81. Mahrholdt, H. et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114, 1581–1590 (2006).

    Article  PubMed  Google Scholar 

  82. Salemi, V. M. et al. Late gadolinium enhancement magnetic resonance imaging in the diagnosis and prognosis of endomyocardial fibrosis patients. Circ. Cardiovasc. Imaging 4, 304–311 (2011).

    Article  PubMed  Google Scholar 

  83. Neilan, T. G. et al. The incidence, pattern, and prognostic value of left ventricular myocardial scar by late gadolinium enhancement in patients with atrial fibrillation. J. Am. Coll. Cardiol. 62, 2205–2214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krittayaphong, R. et al. Prognostic value of late gadolinium enhancement in hypertensive patients with known or suspected coronary artery disease. Int. J. Cardiovasc. Imaging 26 (Suppl. 1), 123–131 (2010).

    Article  PubMed  Google Scholar 

  85. Kwong, R. et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 118, 1011–1020 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schelbert, E. B. et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA 308, 890–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ebeling Barbier, C., Bjerner, T., Johansson, L., Lind, L. & Ahlström, H. Myocardial scars more frequent than expected: magnetic resonance imaging detects potential risk group. J. Am. Coll. Cardiol. 48, 765–771 (2006).

    Article  Google Scholar 

  88. Venkatesh, B. A. et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the multi-ethnic study of atherosclerosis study. Hypertension 64, 508–515 (2014).

    Article  CAS  Google Scholar 

  89. Imai, M. et al. Multi-Ethnic Study of Atherosclerosis: association between left atrial function using tissue tracking from cine MR imaging and myocardial fibrosis. Radiology http://dx.doi.org/10.1148/radiol.14131971.

  90. Moreo, A. et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ. Cardiovasc. Imaging 2, 437–443 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Donekal, S. et al. Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: the Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ. Cardiovasc. Imaging 7, 292–302 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Turkbey, E. B. et al. Myocardial structure, function, and scar in patients with type 1 diabetes mellitus. Circulation 124, 1737–1746 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Akoum, N. et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J. Cardiovasc. Electrophysiol. 23, 44–50 (2012).

    Article  PubMed  Google Scholar 

  94. Daccarett, M. et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J. Am. Coll. Cardiol. 57, 831–838 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. McGann, C. et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol. 7, 23–30 (2014).

    Article  PubMed  Google Scholar 

  96. Oakes, R. S. et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119, 1758–1767 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Babu-Narayan, S. V. et al. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation 111, 2091–2098 (2005).

    Article  PubMed  Google Scholar 

  98. Chen, C. A. et al. Circulating biomarkers of collagen type I metabolism mark the right ventricular fibrosis and adverse markers of clinical outcome in adults with repaired tetralogy of Fallot. Int. J. Cardiol. 167, 2963–2968 (2013).

    Article  PubMed  Google Scholar 

  99. Arheden, H., Saeed, M. & Higgins, C. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology 211, 698–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Look, D. C. & Locker, D. R. Time saving in measurement of NMR and EPR relaxation times. Rev. Sci. Instrum. 41, 250–251 (1970).

    Article  CAS  Google Scholar 

  101. Messroghli, D. et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 52, 141–146 (2004).

    Article  PubMed  Google Scholar 

  102. Chow, K. et al. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn. Reson. Med. 71, 2082–2095 (2014).

    Article  PubMed  Google Scholar 

  103. Weingärtner, S. et al. Heart-rate independent myocardial T1-mapping using combined saturation and inversion preparation pulses. J. Cardiovasc. Magn. Reson. 15, P46 (2013).

    Article  PubMed Central  Google Scholar 

  104. Amano, Y., Tachi, M. & Kumita, S. Three-dimensional Look-Locker MRI for evaluation of postcontrast myocardial and blood T1 values: comparison with two-dimensional Look-Locker and late gadolinium enhancement MRI. Acta Radiol. 54, 8–13 (2013).

    Article  PubMed  Google Scholar 

  105. Coniglio, A. et al. Multiple 3D inversion recovery imaging for volume T1 mapping of the heart. Magn. Reson. Med. 69, 163–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Xue, H. et al. Phase-sensitive inversion recovery for myocardial T1 mapping with motion correction and parametric fitting. Magn. Reson. Med. 69, 1408–1420 (2013).

    Article  PubMed  Google Scholar 

  107. Clique, H., Cheng, H.-L. M., Marie, P.-Y., Felblinger, J. & Beaumont, M. 3D myocardial T1 mapping at 3T using variable flip angle method: pilot study. Magn. Reson. Med. 71, 823–829 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Fontana, M. et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J. Cardiovasc. Magn. Reson. 14, 88 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Roujol, S. et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology http://dx.doi.org/10.1148/radiol.14140296.

  110. Piechnik, S. et al. Shortened modified Look-Locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J. Cardiovasc. Magn. Reson. 12, 69 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schelbert, E. et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J. Cardiovasc. Magn. Reson. 13, 16 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kawel, N. et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J. Cardiovasc. Magn. Reson. 14, 26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gai, N. et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn. Reson. Med. 65, 1407–1415 (2011).

    Article  PubMed  Google Scholar 

  114. Flett, A. et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122, 138–144 (2010).

    Article  PubMed  Google Scholar 

  115. Knowles, B. R. et al. Pharmacokinetic modeling of delayed gadolinium enhancement in the myocardium. Magn. Reson. Med. 60, 1524–1530 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. White, S. K. et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc. Imaging 6, 955–962 (2013).

    Article  PubMed  Google Scholar 

  117. Kawel, N. et al. T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J. Cardiovasc. Magn. Reson. 14, 27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Raman, F. S. et al. Modified look-locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners. J. Cardiovasc. Magn. Reson. 15, 64 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shao, J., Nguyen, K.-L., Natsuaki, Y., Spottiswoode, B. & Hu, P. Instantaneous signal loss simulation (InSiL): an improved algorithm for myocardial T1 mapping using the MOLLI sequence. J. Magn. Reson. Imaging http://dx.doi.org/10.1002/jmri.24599.

  120. Moon, J. C. et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working group of the European Society of Cardiology consensus statement. J. Cardiovasc. Magn. Reson. 15, 92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Iles, L. et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52, 1574–1580 (2008).

    Article  PubMed  Google Scholar 

  122. Sibley, C. T. et al. T1 mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology 265, 724–732 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mascherbauer, J. et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ. Cardiovasc. Imaging 6, 1056–1065 (2013).

    Article  PubMed  Google Scholar 

  124. Miller, C. A. et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ. Cardiovasc. Imaging 6, 373–383 (2013).

    Article  PubMed  Google Scholar 

  125. Brooks, J., Kramer, C. M. & Salerno, M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J. Magn. Reson. Imaging 38, 1591–1595 (2013).

    Article  PubMed  Google Scholar 

  126. Kellman, P. et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J. Cardiovasc. Magn. Reson. 14, 64 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ntusi, N. A. et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis–a clinical study using myocardial T1-mapping and extracellular volume quantification. J. Cardiovasc. Magn. Reson. 16, 21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Brouwer, W. P. et al. In-vivo T1 cardiovascular magnetic resonance study of diffuse myocardial fibrosis in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16, 28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ellims, A. H. et al. Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J. Cardiovasc. Magn. Reson. 14, 76 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fang, L. et al. Associations between fibrocytes and postcontrast myocardial T1 times in hypertrophic cardiomyopathy. J. Am. Heart Assoc. 2, e000270 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tham, E. B. et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J. Cardiovasc. Magn. Reson. 15, 48 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Neilan, T. G. et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am. J. Cardiol. 111, 717–722 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Ugander, M. et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur. Heart J. 33, 1268–1278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sado, D. M. et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98, 1436–1441 (2012).

    Article  PubMed  Google Scholar 

  135. Liu, C.-Y. et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 62, 1280–1287 (2013).

    Article  PubMed  Google Scholar 

  136. Neilan, T. G. et al. Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions. JACC Cardiovasc. Imaging 6, 672–683 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Olivetti, G. et al. Gender differences and aging: effects on the human heart. J. Am. Coll. Cardiol. 26, 1068–1079 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Scantlebury, D. C. & Borlaug, B. A. Why are women more likely than men to develop heart failure with preserved ejection fraction? Curr. Opin. Cardiol. 26, 562–568 (2011).

    Article  PubMed  Google Scholar 

  139. Ng, A. C. T. et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ. Cardiovasc. Imaging 5, 51–59 (2012).

    Article  PubMed  Google Scholar 

  140. Rao, A. D. et al. Aldosterone and myocardial extracellular matrix expansion in type 2 diabetes mellitus. Am. J. Cardiol. 112, 73–78 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jellis, C. et al. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ. Cardiovasc. Imaging 4, 693–702 (2011).

    Article  PubMed  Google Scholar 

  142. Wong, T. C. et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur. Heart J. 35, 657–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chin, C. W. L. et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 15, 556–565 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Flett, A. S. et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur. Heart J. Cardiovasc. Imaging 13, 819–826 (2012).

    Article  PubMed  Google Scholar 

  145. Marzluf, B. A. et al. Diffuse myocardial fibrosis by post-contrast T1-time predicts outcome in heart failure with preserved ejection fraction. J. Cardiovasc. Magn. Reson. 15, M6 (2013).

    Article  PubMed Central  Google Scholar 

  146. Ellims, A. H. et al. Diffuse myocardial fibrosis evaluated by post-contrast T1 mapping correlates with left ventricular stiffness. J. Am. Coll. Cardiol. 63, 1112–1118 (2014).

    Article  PubMed  Google Scholar 

  147. Puntmann, V. O. et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ. Cardiovasc. Imaging 6, 295–301 (2013).

    Article  PubMed  Google Scholar 

  148. Neilan, T. G. et al. Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc. Imaging 7, 1–11 (2014).

    Article  PubMed  Google Scholar 

  149. Kellman, P., Wilson, J., Xue, H., Ugander, M. & Arai, A. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J. Cardiovasc. Magn. Reson. 14, 64 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chan, W. et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc. Imaging 5, 884–893 (2012).

    Article  PubMed  Google Scholar 

  151. Pop, M. et al. in Statistical Atlases and Computational Models of the Heart (eds Camara, O. et al.) 326–335 (Springer, 2013).

    Google Scholar 

  152. Wong, T. C. et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126, 1206–1216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Beinart, R. et al. Cardiac magnetic resonance T1 mapping of left atrial myocardium. Heart Rhythm 10, 1325–1331 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kawel-Boehm, N. et al. In-vivo assessment of normal T1 values of the right-ventricular myocardium by cardiac MRI. Int. J. Cardiovasc. Imaging 30, 323–328 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Rehwald, W. G., Fieno, D. S., Chen, E.-L., Kim, R. J. & Judd, R. M. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105, 224–229 (2002).

    Article  PubMed  Google Scholar 

  156. Saeed, M., Higgins, C. B., Geschwind, J. F. & Wendland, M. F. T1-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echo-planar MR imaging. Eur. Radiol. 10, 310–318 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to João A. C. Lima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Studies demonstrating prognostic implications of LGE and T1 mapping (DOCX 23 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambale-Venkatesh, B., Lima, J. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol 12, 18–29 (2015). https://doi.org/10.1038/nrcardio.2014.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing