Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging modalities for the early diagnosis of acute aortic syndrome

Abstract

The term acute aortic syndrome (AAS) incorporates aortic dissection, intramural haematoma, and penetrating atherosclerotic ulcer. The common feature of these entities is disruption of the medial layer of the aortic wall. Owing to the life-threatening nature of these conditions, prompt and accurate diagnosis is of paramount importance—misdiagnosis can be fatal. The noninvasive imaging techniques that have a fundamental role in the diagnosis and management of patients with AAS include CT, MRI, transoesophageal echocardiography (TEE), and transthoracic echocardiography (TTE). CT is the most-commonly used imaging modality owing to its wide availability, accuracy, and large field of view. CT plus TTE is the best combination for diagnosing AAS and its complications, and allows important morphological and dynamic aspects of AAS to be assessed and appropriately managed. Ideally, TEE should be performed immediately before surgery or endovascular treatment, in the operating theatre and under general anaesthesia. In stable patients with an uncertain diagnosis of intramural haematoma despite high clinical suspicion, MRI is the technique of choice to make a definitive diagnosis. Imaging techniques have an important role in the primary diagnosis, treatment strategy, and risk stratification of patients with AAS.

Key Points

  • CT is the best imaging modality to diagnose acute aortic syndrome, owing to its accuracy, widespread availability, and because it allows the rapid evaluation of the entire aorta and branches

  • Transthoracic echocardiography (TTE) is useful as the initial imaging modality in the emergency setting when aortic dissection is suspected, particularly involving the proximal ascending aorta; contrast agents can improve accuracy

  • Acute aortic syndrome is best diagnosed using a combination of CT and TTE; TTE complements CT by adding information on diagnosis and quantification of aortic regurgitation, pericardial tamponade, and left ventricular function

  • The main applications of transoesophageal echocardiography are to define the entry tear location and size, the mechanisms and severity of aortic regurgitation, and flow dynamics of the two lumina

  • Hyperintense T1-weighted MRI is the technique of choice to visualize small intramural haematoma; this technique can be indicated in stable patients in whom the diagnosis is uncertain

  • The diagnostic imaging strategy should be individualized according to a patient's condition, the relevant diagnostic questions to be answered, and local institutional factors, such as expertise and technological availability

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2D transthoracic echocardiographic images of type A aortic dissection.
Figure 2: Contrast-enhanced transthoracic echocardiographic images.
Figure 3: Transoesophageal echocardiographic evaluation of type B aortic dissection.
Figure 4: CT scan images.
Figure 5: Sagittal oblique view of a 3D MRI angiogram in a patient with a surgically repaired type A aortic dissection and a residual type B dissection.
Figure 6: 3D transoesophageal echocardiographic images of a large entry tear in a type B aortic dissection located in the proximal descending aorta.
Figure 7: Aortic intramural haematoma evaluated by various imaging techniques.
Figure 8: Penetrating aortic ulcers.
Figure 9: Diagnostic algorithm in patients with acute aortic dissection.

Similar content being viewed by others

References

  1. Mészáros, I. et al. Epidemiology and clinicopathology of aortic dissection. Chest 117, 1271–1278 (2000).

    Article  Google Scholar 

  2. Evangelista, A. et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur. J. Echocardiogr. 11, 645–658 (2010).

    Article  Google Scholar 

  3. Yamada, T., Tada, S. & Harada, J. Aortic dissection without intimal rupture: diagnosis with MR imaging and CT. Radiology 168, 347–352 (1988).

    Article  CAS  Google Scholar 

  4. Murray, J. G. et al. Intramural hematoma of the thoracic aorta: MR image findings and their prognostic implications. Radiology 204, 349–355 (1997).

    Article  CAS  Google Scholar 

  5. Park, K. H. et al. Prevalence of aortic intimal defect in surgically treated acute type A intramural hematoma. Ann. Thorac. Surg. 86, 1494–1500 (2008).

    Article  Google Scholar 

  6. Chao, C. P., Walker, T. G. & Kalva, S. P. Natural history and CT appearances of aortic intramural hematoma. Radio graphics 29, 791–804 (2009).

    Google Scholar 

  7. Stanson, A. W. et al. Penetrating atherosclerotic ulcers of the thoracic aorta: natural history and clinicopathologic correlations. Ann. Vasc. Surg. 1, 15–23 (1986).

    Article  CAS  Google Scholar 

  8. Coady, M. A. et al. Penetrating ulcer of the thoracic aorta: what is it? How do we recognize it? How do we manage it? J. Vasc. Surg. 27, 1006–1015 (1998).

    Article  CAS  Google Scholar 

  9. Hansen, M. S., Nogareda, G. J. & Hutchison, S. J. Frequency of and inappropriate treatment of misdiagnosis of acute aortic dissection. Am. J. Cardiol. 99, 852–856 (2007).

    Article  Google Scholar 

  10. Hagan, P. G. et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 283, 897–903 (2000).

    Article  CAS  Google Scholar 

  11. Nienaber, C. A. & Powell, J. T. Management of acute aortic syndromes. Eur. Heart J. 33, 26–35 (2012).

    Article  Google Scholar 

  12. Klompas, M. Does this patient have an acute thoracic aortic dissection? JAMA 287, 2262–2272 (2002).

    Article  Google Scholar 

  13. von Kodolitsch, Y., Schwartz, A. G. & Nienaber, C. A. Clinical prediction of acute aortic dissection. Arch. Intern. Med. 160, 2977–2982 (2000).

    Article  CAS  Google Scholar 

  14. Tsai, T. T., Nienaber, C. A. & Eagle, K. A. Acute aortic syndromes. Circulation 112, 3802–3813 (2005).

    Article  Google Scholar 

  15. Nallamothu, B. K. et al. Syncope in acute aortic dissection: diagnostic, prognostic, and clinical implications. Am. J. Med. 113, 468–471 (2002).

    Article  Google Scholar 

  16. von Kodolitsch, Y. et al. Chest radiography for the diagnosis of acute aortic syndrome. Am. J. Med. 116, 73–77 (2004).

    Article  Google Scholar 

  17. Eggebrecht, H. et al. Value of plasma fibrin D-dimers for detection of acute aortic dissection. J. Am. Coll. Cardiol. 44, 804–809 (2004).

    Article  CAS  Google Scholar 

  18. Shinohara, T. et al. Soluble elastin fragments in serum are elevated in acute aortic dissection. Arterioscler. Thromb. Vasc. Biol. 23, 1839–1844 (2003).

    Article  CAS  Google Scholar 

  19. Suzuki, T. et al. Diagnosis of acute aortic dissection by D-dimer: the International Registry of Acute Aortic Dissection Substudy on Biomarkers (IRAD-Bio) experience. Circulation 119, 2702–2707 (2009).

    Article  Google Scholar 

  20. Meredith, E. L. & Masani, N. D. Echocardiography in the emergency assessment of acute aortic syndromes. Eur. J. Echocardiogr. 10, i31–i39 (2009).

    Article  Google Scholar 

  21. Evangelista, A. et al. Impact of contrast-enhanced echocardiography on the diagnostic algorithm of acute aortic dissection. Eur. Heart J. 31, 472–479 (2010).

    Article  Google Scholar 

  22. Cecconi, M. et al. The role of transthoracic echocardiography in the diagnosis and management of acute type A aortic syndrome. Am. Heart J. 163, 112–118 (2012).

    Article  Google Scholar 

  23. Keren, A. et al. Accuracy of biplane and multiplane transesophageal echocardiography in diagnosis of typical acute aortic dissection and intramural hematoma. J. Am. Coll. Cardiol. 28, 627–636 (1996).

    Article  CAS  Google Scholar 

  24. Erbel, R. et al. Effect of medical and surgical therapy on aortic dissection evaluated by transesophageal echocardiography: implications for prognosis and therapy. The European Cooperative Study Group on Echocardiography. Circulation 87, 1604–1615 (1993).

    Article  CAS  Google Scholar 

  25. Erbel, R. et al. Echocardiography in diagnosis of aortic dissection. Lancet 1, 457–461 (1989).

    Article  CAS  Google Scholar 

  26. Nienaber, C. A. et al. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N. Engl. J. Med. 328, 1–9 (1993).

    Article  CAS  Google Scholar 

  27. Chirillo, F. et al. Comparative diagnostic value of transesophageal echocardiography and retrograde aortography in the evaluation of thoracic aortic dissection. Am. J. Cardiol. 74, 590–595 (1994).

    Article  CAS  Google Scholar 

  28. Evangelista, A. et al. Diagnosis of ascending aortic dissection by transesophageal echocardiography: utility of M-mode in recognizing artifacts. J. Am. Coll. Cardiol. 27, 102–107 (1996).

    Article  CAS  Google Scholar 

  29. Pepi, M. et al. Rapid diagnosis and management of thoracic aortic dissection and intramural haematoma: a prospective study of advantages of multiplane vs. biplane transoesophageal echocardiography. Eur. J. Echocardiogr. 1, 72–79 (2000).

    Article  CAS  Google Scholar 

  30. Evangelista, A. et al. Spanish Acute Aortic Syndrome Study (RESA): better diagnosis is not reflected in reduced mortality. Rev. Esp. Cardiol. 62, 255–262 (2009).

    Article  Google Scholar 

  31. McMahon, M. A. & Squirrell, C. A. Multidetector CT of aortic dissection: a pictorial review. Radiographics 30, 445–460 (2010).

    Article  Google Scholar 

  32. Yoshida, S. et al. Thoracic involvement of type A aortic dissection and intramural hematoma: diagnostic accuracy—comparison of emergency helical CT and surgical findings. Radiology 228, 430–435 (2003).

    Article  Google Scholar 

  33. Sommer, T. et al. Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology 199, 347–352 (1996).

    Article  CAS  Google Scholar 

  34. Shiga, T., Wajima, Z., Apfel, C. C., Inoue, T. & Ohe, Y. Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern. Med. 166, 1350–1356 (2006).

    Article  Google Scholar 

  35. Ko, S. F. et al. Effects of heart rate on motion artifacts of the aorta on non-ECG-assisted 0.5-sec thoracic MDCT. Am. J. Roentgenol. 184, 1225–1230 (2005).

    Article  Google Scholar 

  36. Duvernoy, O., Coulden, R. & Ytterberg, C. Aortic motion: a potential pitfall in CT imaging of dissection in the ascending aorta. J. Comput. Assist. Tomogr. 19, 569–572 (1995).

    Article  CAS  Google Scholar 

  37. Qanadli, S. D. et al. Motion artifacts of the aorta simulating aortic dissection on spiral CT. J. Comput. Assist. Tomogr. 23, 1–6 (1999).

    Article  CAS  Google Scholar 

  38. Cheong, B. & Flamm, S. D. Use of electrocardiographic gating in computed tomography angiography of the ascending thoracic aorta. J. Am. Coll. Cardiol. 49, 1751–1752 (2007).

    Article  Google Scholar 

  39. Chung, J. H., Ghoshhajra, B. B., Rojas, C. A., Dave, B. R. & Abbara, S. CT angiography of the thoracic aorta. Radiol. Clin. North Am. 48, 249–264 (2010).

    Article  Google Scholar 

  40. Abbara, S., Kalva, S., Cury, R. C. & Isselbacher, E. M. Thoracic aortic disease: spectrum of multidetector computed tomography imaging findings. J. Cardiovasc. Comput. Tomogr. 1, 40–54 (2007).

    Article  Google Scholar 

  41. Evangelista, A. et al. Long-term follow-up of aortic intramural hematoma: predictors of outcome. Circulation 108, 583–589 (2003).

    Article  Google Scholar 

  42. Evangelista, M. A. Progress in the acute aortic syndrome [Spanish]. Rev. Esp. Cardiol. 60, 428–439 (2007).

    Article  Google Scholar 

  43. Takakuwa, K. M. & Halpern, E. J. Evaluation of a “triple rule-out” coronary CT angiography protocol: use of 64-section CT in low-to-moderate risk emergency department patients suspected of having acute coronary syndrome. Radiology 248, 438–446 (2008).

    Article  Google Scholar 

  44. Halpern, E. J. Triple-rule-out CT angiography for evaluation of acute chest pain and possible acute coronary syndrome. Radiology 252, 332–345 (2009).

    Article  Google Scholar 

  45. Schertler, T. et al. Triple rule-out CT in patients with suspicion of acute pulmonary embolism: findings and accuracy. Acad. Radiol. 16, 708–717 (2009).

    Article  Google Scholar 

  46. Rogers, I. S. et al. Usefulness of comprehensive cardiothoracic computed tomography in the evaluation of acute undifferentiated chest discomfort in the emergency department (CAPTURE). Am. J. Cardiol. 107, 643–650 (2011).

    Article  Google Scholar 

  47. Gruettner, J. et al. Clinical assessment of chest pain and guidelines for imaging. Eur. J. Radiol. 81, 3663–3668 (2012).

    Article  CAS  Google Scholar 

  48. Nienaber, C. A. et al. Diagnosis of thoracic aortic dissection: magnetic resonance imaging versus transesophageal echocardiography. Circulation 85, 434–447 (1992).

    Article  CAS  Google Scholar 

  49. von Kodolitsch, Y., Simic, O. & Nienaber, C. A. Aneurysms of the ascending aorta: diagnostic features and prognosis in patients with Marfan's syndrome versus hypertension. Clin. Cardiol. 21, 817–824 (1998).

    Article  CAS  Google Scholar 

  50. Chang, J. M., Friese, K., Caputo, G. R., Kondo, C. & Higgins, C. B. MR measurement of blood flow in the true and false channel in chronic aortic dissection. J. Comput. Assist. Tomogr. 15, 418–423 (1991).

    Article  CAS  Google Scholar 

  51. Nijm, G. M., Swiryn, S., Larson, A. C. & Sahakian, A. V. Extraction of the magnetohydrodynamic blood flow potential from the surface electrocardiogram in magnetic resonance imaging. Med. Biol. Eng. Comput. 46, 729–733 (2008).

    Article  Google Scholar 

  52. Fattori, R. & Nienaber, C. A. MRI of acute and chronic aortic pathology: pre-operative and postoperative evaluation. J. Magn. Reson. Imaging 10, 741–750 (1999).

    Article  CAS  Google Scholar 

  53. Krinsky, G. et al. Gadolinium-enhanced three-dimensional MR angiography of acquired arch vessel disease. Am. J. Roentgenol. 167, 981–987 (1996).

    Article  CAS  Google Scholar 

  54. Zhu, H. et al. High temporal and spatial resolution 4D MRA using spiral data sampling and sliding window reconstruction. Magn. Reson. Med. 52, 14–18 (2004).

    Article  Google Scholar 

  55. Fattori, R. et al. Evolution of aortic dissection after surgical repair. Am. J. Cardiol. 86, 868–872 (2000).

    Article  CAS  Google Scholar 

  56. Clough, R. E. et al. A new method for quantification of false lumen thrombosis in aortic dissection using magnetic resonance imaging and a blood pool contrast agent. J. Vasc. Surg. 54, 1251–1258 (2011).

    Article  Google Scholar 

  57. Kawamoto, S., Bluemke, D. A., Traill, T. A. & Zerhouni, E. A. Thoracoabdominal aorta in Marfan syndrome: MR imaging findings of progression of vasculopathy after surgical repair. Radiology 203, 727–732 (1997).

    Article  CAS  Google Scholar 

  58. Hartnell, G. G. Imaging of aortic aneurysms and dissection: CT and MRI. J. Thorac. Imaging 16, 35–46 (2001).

    Article  CAS  Google Scholar 

  59. Evangelista, A. et al. Long-term outcome of aortic dissection with patent false lumen: predictive role of entry tear size and location. Circulation 125, 3133–3141 (2012).

    Article  Google Scholar 

  60. Evangelista, A. et al. Usefulness of real-time three-dimensional transoesophageal echocardiography in the assessment of chronic aortic dissection. Eur. J. Echocardiogr. 12, 272–277 (2011).

    Article  Google Scholar 

  61. LePage, M. A., Quint, L. E., Sonnad, S. S., Deeb, G. M. & Williams, D. M. Aortic dissection: CT features that distinguish true lumen from false lumen. Am. J. Roentgenol. 177, 207–211 (2001).

    Article  CAS  Google Scholar 

  62. Mukherjee, D. et al. Implications of periaortic hematoma in patients with acute aortic dissection (from the International Registry of Acute Aortic Dissection). Am. J. Cardiol. 96, 1734–1738 (2005).

    Article  Google Scholar 

  63. Movsowitz, H. D., Levine, R. A., Hilgenberg, A. D. & Isselbacher, E. M. Transesophageal echocardiographic description of the mechanisms of aortic regurgitation in acute type A aortic dissection: implications for aortic valve repair. J. Am. Coll. Cardiol. 36, 884–890 (2000).

    Article  CAS  Google Scholar 

  64. Williams, D. M. et al. The dissected aorta: part III: anatomy and radiologic diagnosis of branch-vessel compromise. Radiology 203, 37–44 (1997).

    Article  CAS  Google Scholar 

  65. Vernhet, H. et al. Abdominal CT angiography before surgery as a predictor of postoperative death in acute aortic dissection. Am. J. Roentgenol. 182, 875–879 (2004).

    Article  Google Scholar 

  66. Mohr-Kahaly, S., Erbel, R., Kearney, P., Puth, M. & Meyer, J. Aortic intramural hemorrhage visualized by transesophageal echocardiography: findings and prognostic implications. J. Am. Coll. Cardiol. 23, 658–664 (1994).

    Article  CAS  Google Scholar 

  67. Harris, K. M., Braverman, A. C., Gutierrez, F. R., Barzilai, B. & Davila-Roman, V. G. Transesophageal echocardiographic and clinical features of aortic intramural hematoma. J. Thorac. Cardiovasc. Surg. 114, 619–626 (1997).

    Article  CAS  Google Scholar 

  68. Ide, K. et al. Acute aortic dissection with intramural hematoma: possibility of transition to classic dissection or aneurysm. J. Thorac. Imaging 11, 46–52 (1996).

    Article  CAS  Google Scholar 

  69. Kaji, S. et al. Prediction of progression or regression of type A aortic intramural hematoma by computed tomography. Circulation 100 (Suppl.), II281–II286 (1999).

    CAS  PubMed  Google Scholar 

  70. Choi, S. H. et al. Useful CT findings for predicting the progression of aortic intramural hematoma to overt aortic dissection. J. Comput. Assist. Tomogr. 25, 295–299 (2001).

    Article  CAS  Google Scholar 

  71. Lee, Y. K. et al. Acute and chronic complications of aortic intramural hematoma on follow-up computed tomography: incidence and predictor analysis. J. Comput. Assist. Tomogr. 31, 435–440 (2007).

    Article  Google Scholar 

  72. Nienaber, C. A. et al. Intramural hemorrhage of the thoracic aorta: diagnostic and therapeutic implications. Circulation 92, 1465–1472 (1995).

    Article  CAS  Google Scholar 

  73. Evangelista, A. et al. Acute intramural hematoma of the aorta: a mystery in evolution. Circulation 111, 1063–1070 (2005).

    Article  Google Scholar 

  74. Cooke, J. P., Kazmier, F. J. & Orszulak, T. A. The penetrating aortic ulcer: pathologic manifestations, diagnosis, and management. Mayo Clin. Proc. 63, 718–725 (1988).

    Article  CAS  Google Scholar 

  75. Hayashi, H. et al. Penetrating atherosclerotic ulcer of the aorta: imaging features and disease concept. Radiographics 20, 995–1005 (2000).

    Article  CAS  Google Scholar 

  76. Vilacosta, I. et al. Penetrating atherosclerotic aortic ulcer: documentation by transesophageal echocardiography. J. Am. Coll. Cardiol. 32, 83–89 (1998).

    Article  CAS  Google Scholar 

  77. Kodolitsch, Y., Krause, N., Spielmann, R. & Nienaber, C. A. Diagnostic potential of combined transthoracic echocardiography and x-ray computed tomography in suspected aortic dissection. Clin. Cardiol. 22, 345–352 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Evangelista researched data for the article. A. Evangelista, A. Carro, and H. Cuéllar contributed substantially to discussion of the content of the article. A. Evangelista and A. Carro wrote the manuscript. A. Carro, S. Moral, G. Teixido-Tura, J. F. Rodríguez-Palomares, H. Cuéllar, and D. García-Dorado reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Artur Evangelista.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evangelista, A., Carro, A., Moral, S. et al. Imaging modalities for the early diagnosis of acute aortic syndrome. Nat Rev Cardiol 10, 477–486 (2013). https://doi.org/10.1038/nrcardio.2013.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing