Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inherited risk factors for venous thromboembolism

Key Points

  • Knowledge about the spectrum of genetic abnormalities causing thrombophilia has greatly expanded in the past 20 years

  • These abnormalities increase the risk of venous thromboembolism (VTE) by causing blood hypercoagulability through the impairment of natural anticoagulant pathways or the potentiation of procoagulants

  • VTE risk is higher in carriers of natural anticoagulant deficiencies, homozygous defects, and multiple abnormalities (severe thrombophilia) than in heterozygotes for factor V Leiden and prothrombin 20210A (mild thrombophilia)

  • Family history of VTE is a strong risk factor for VTE regardless of the presence of known VTE susceptibility genes

  • Thrombophilia screening is useful in some instances to inform the optimum duration of secondary prophylaxis in patients who have developed VTE and are at high risk of recurrence

  • Thrombosis-free individuals in risk-enhancing situations (pregnancy, oral contraceptive use, hormone replacement therapy, orthopaedic surgery) do not require thrombophilia screening, except in families with natural anticoagulant deficiencies or history of VTE

Abstract

Venous thromboembolism (VTE) has important heritable components. In the past 20 years, knowledge in this field has greatly increased with the identification of a number of gene variants causing hypercoagulability. The two main mechanisms are loss-of-function of anticoagulant proteins and gain-of-function of procoagulants, the latter owing to increased synthesis or impaired downregulation of a normal protein or, more rarely, to synthesis of a functionally hyperactive molecule. Diagnosis of thrombophilia is useful to determine the causes of VTE, recognizing that this multifactorial disease can also be influenced by various acquired factors including cancer, surgery, trauma, prolonged immobilization, or reproduction-associated risk factors. Diagnosis of inherited thrombophilia rarely affects the acute or long-term management of VTE. However, the risk of recurrent VTE is increased in anticoagulant-deficient patients and in homozygotes for gain-of-function mutations. Screening for inherited thrombophilia in thrombosis-free individuals is indicated only for relatives of a proband who is anticoagulant-deficient or has a family history of VTE. In families with thrombophilia and VTE, primary antithrombotic prophylaxis during risk situations lowers the rate of incident VTE. In this Review, we discuss the main causes of inherited thrombophilia, the associated clinical manifestations, and the implications for antithrombotic prophylaxis in the affected individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anticoagulant mechanisms of antithrombin, which mainly inhibits factor IIa and factor Xa, but also factors VIIa, IXa, XIa, and XIIa.
Figure 2: Anticoagulant mechanisms of the protein C–protein S system.

Similar content being viewed by others

References

  1. van Schouwenburg, I. M. et al. Increased risk of arterial thromboembolism after a prior episode of venous thromboembolism: results from the Prevention of REnal and Vascular ENd stage Disease (PREVEND) Study. Br. J. Haematol. 159, 216–222 (2012).

    Article  PubMed  Google Scholar 

  2. Cushman, M. et al. Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. Am. J. Med. 117, 19–25 (2004).

    Article  PubMed  Google Scholar 

  3. Nordström, M., Lindblad, B., Bergqvist, D. & Kjellstöm, T. A. prospective study of the incidence of deep-vein thrombosis within a defined urban population. J. Intern. Med. 232, 155–160 (1992).

    Article  PubMed  Google Scholar 

  4. Oger, E. for the EPI-GETBP Study Group. Incidence of venous thromboembolism: a community-based study in Western France. Thromb. Haemost. 83, 657–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Naess, I. A. et al. Incidence and mortality of venous thrombosis: a population-based study. J. Thromb. Haemost. 5, 692–699 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Heit, J. A. et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case–control study. Arch. Intern. Med. 160, 809–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Samama, M. M. An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch. Intern. Med. 160, 3415–3420 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Martinelli, I. & De Stefano, V. Rare thromboses of cerebral, splanchnic and upper-extremity veins. A narrative review. Thromb. Haemost. 103, 1136–1144 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Ocak, G. et al. Risk of venous thrombosis in patients with major illnesses: results from the MEGA study. J. Thromb. Haemost. 11, 116–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Greer, I. A. Thrombosis in pregnancy: updates in diagnosis and management. Hematology Am. Soc. Hematol. Educ. Program 2012, 203–207 (2012).

    PubMed  Google Scholar 

  11. Battaglioli, T. & Martinelli, I. Hormone therapy and thromboembolic disease. Curr. Opin. Hematol. 14, 488–493 (2007).

    CAS  PubMed  Google Scholar 

  12. Heit, J. A. et al. Familial segregation of venous thromboembolism. J. Thromb. Haemost. 2, 731–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Bezemer, I. D., van der Meer, F. J., Eikenboom, J. C., Rosendaal, F. R. & Doggen, C. J. The value of family history as a risk indicator for venous thrombosis. Arch. Intern. Med. 169, 610–615 (2009).

    Article  PubMed  Google Scholar 

  14. Zöller, B., Li, X., Sundquist, J. & Sundquist, K. Parental history and venous thromboembolism: a nationwide study of age-specific and sex-specific familial risks in Sweden. J. Thromb. Haemost. 9, 64–70 (2011).

    Article  PubMed  Google Scholar 

  15. Sørensen, H. T. et al. Familial risk of venous thromboembolism: a nationwide cohort study. J. Thromb. Haemost. 9, 320–324 (2011).

    Article  PubMed  Google Scholar 

  16. Rosendaal, F. R. Venous thrombosis: a multicausal disease. Lancet 353, 1167–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Nygaard, K. K. & Brown, G. E. Essential thrombophilia: report of five cases. Arch. Intern. Med. 59, 82–106 (1937).

    Article  Google Scholar 

  18. Jordan, F. L. & Nandorff, A. The familial tendency in thrombo-embolic disease. Acta Med. Scand. 156, 267–275 (1956).

    Article  CAS  PubMed  Google Scholar 

  19. Egeberg, O. Inherited antithrombin deficiency causing thrombophilia. Thromb. Diath. Haemorrh. 13, 516–530 (1965).

    Article  CAS  PubMed  Google Scholar 

  20. Griffin, J. H., Evatt, B., Zimmerman, T. S., Kleiss, A. J. & Wideman, C. Deficiency of protein C in congenital thrombotic disease. J. Clin. Invest. 68, 1370–1373 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Comp, P. C. & Esmon, C. T. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N. Engl. J. Med. 311, 1525–1528 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Schwarz, H. P., Fischer, M., Hopmeier, P., Batard, M. A. & Griffin, J. H. Plasma protein S deficiency in familial thrombotic disease. Blood 64, 1297–1300 (1984).

    CAS  PubMed  Google Scholar 

  23. Roemisch, J., Gray, E., Hoffmann, J. N. & Wiedermann, C. J. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul. Fibrinolysis 13, 657–670 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Dahlbäck, B. & Villoutreix, B. O. The anticoagulant protein C pathway. FEBS Lett. 579, 3310–3316 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Dahlbäck, B., Carlsson, M. & Svensson, P. J. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc. Natl Acad. Sci. USA 90, 1004–1008 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bertina, R. M. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Poort, S. R., Rosendaal, F. R., Reitsma, P. H. & Bertina, R. M. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88, 3698–3703 (1996).

    CAS  PubMed  Google Scholar 

  28. Wells, P. S. et al. Prevalence of antithrombin deficiency in healthy blood donors: a cross-sectional study. Am. J. Hematol. 45, 321–324 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Tait, R. C. et al. Prevalence of antithrombin deficiency in the healthy population. Br. J. Haematol. 87, 106–112 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. De Stefano, V., Finazzi, G. & Mannucci, P. M. Inherited thrombophilia: pathogenesis, clinical syndromes, and management. Blood 87, 3531–3544 (1996).

    CAS  PubMed  Google Scholar 

  31. Lane, D. A., Kunz, G., Olds, R. J. & Thein, S. L. Molecular genetics of antithrombin deficiency. Blood Rev. 10, 59–74 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Finazzi, G., Caccia, R. & Barbui, T. Different prevalence of thromboembolism in the subtypes of congenital antithrombin III deficiency: review of 404 cases. Thromb. Haemost. 58, 1094 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Rossi, E. et al. Report of a novel kindred with antithrombin heparin-binding site variant (47 Arg to His): demand for an automated progressive antithrombin assay to detect molecular variants with low thrombotic risk. Thromb. Haemost. 98, 695–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Tait, R. C. et al. Prevalence of protein C deficiency in the healthy population. Thromb. Haemost. 73, 87–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Miletich, J., Sherman, L. & Broze, G. Jr. Absence of thrombosis in subjects with heterozygous protein C deficiency. N. Engl. J. Med. 317, 991–996 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Marciniak, E., Wilson, H. D. & Marlar, R. A. Neonatal purpura fulminans: a genetic disorder related to the absence of protein C in blood. Blood 65, 15–20 (1985).

    CAS  PubMed  Google Scholar 

  37. Reitsma, P. H. et al. Protein C deficiency: a database of mutations, 1995 update. On behalf of the Subcommittee on Plasma Coagulation Inhibitors of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost. 73, 876–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Hackeng, T. M., Maurissen, L. F., Castoldi, E. & Rosing, J. Regulation of TFPI function by protein S. J. Thromb. Haemost. 7 (Suppl. 1), 165–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Dahm, A. E., Sandset, P. M. & Rosendaal, F. R. The association between protein S levels and anticoagulant activity of tissue factor pathway inhibitor type 1. J. Thromb. Haemost. 6, 393–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Castoldi, E., Simioni, P., Tormene, D., Rosing, J. & Hackeng, T. M. Hereditary and acquired protein S deficiencies are associated with low TFPI levels in plasma. J. Thromb. Haemost. 8, 294–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Beauchamp, N. J., Dykes, A. C., Parikh, N., Tait, R. C. & Daly, M. E. The prevalence of, and molecular defects underlying, inherited protein S deficiency in the general population. Br. J. Haematol. 125, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lane, D. A. et al. Inherited thrombophilia: part 1. Thromb. Haemost. 76, 651–662 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. García de Frutos, P., Fuentes-Prior, P., Hurtado, B. & Sala, N. Molecular basis of protein S deficiency. Thromb. Haemost. 98, 543–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Zöller, B., García de Frutos, P. & Dahlbäck, B. Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood 85, 3524–3531 (1995).

    PubMed  Google Scholar 

  45. Simmonds, R. E. et al. Genetic and phenotypic analysis of a large (122-member) protein S-deficient kindred provides an explanation for the familial coexistence of type I and type III plasma phenotypes. Blood 89, 4364–4370 (1997).

    CAS  PubMed  Google Scholar 

  46. Bertina, R. M. et al. Heerlen polymorphism of protein S, an immunologic polymorphism due to dimorphism of residue 460. Blood 76, 538–548 (1990).

    CAS  PubMed  Google Scholar 

  47. Libourel, E. J. et al. Protein S type III deficiency is no risk factor for venous and arterial thromboembolism in 168 thrombophilic families: a retrospective study. Blood Coagul. Fibrinolysis 16, 135–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Castoldi, E. et al. Similar hypercoagulable state and thrombosis risk in type I and type III protein S-deficient individuals from families with mixed type I/III protein S deficiency. Haematologica 95, 1563–1571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan, W. P., Lee, C. K., Kwong, Y. L., Lam, C. K. & Liang, R. A novel mutation of Arg306 of factor V gene in Hong Kong Chinese. Blood 91, 1135–1139 (1998).

    CAS  PubMed  Google Scholar 

  50. Williamson, D., Brown, K., Luddington, R., Baglin, C. & Baglin, T. Factor V Cambridge: a new mutation (Arg306 Thr) associated with resistance to activated protein C. Blood 91, 1140–1144 (1998).

    CAS  PubMed  Google Scholar 

  51. Norstrøm, E., Thorelli, E. & Dahlbäck, B. Functional characterization of recombinant FV Hong Kong and FV Cambridge. Blood 100, 524–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. De Stefano, V., Chiusolo, P., Paciaroni, K. & Leone, G. Epidemiology of factor V Leiden: clinical implications. Sem. Thromb. Haemost. 24, 367–379 (1998).

    Article  CAS  Google Scholar 

  53. Rosendaal, F. R., Koster, T., Vandenbroucke, J. P. & Reitsma, P. H. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85, 1504–1508 (1995).

    CAS  PubMed  Google Scholar 

  54. Kyrle, P. A. et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler. Thromb. Vasc. Biol. 18, 1287–1291 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Smirnov, M. D., Safa, O., Esmon, N. L. & Esmon, C. T. Inhibition of activated protein C anticoagulant activity by prothrombin. Blood 94, 3839–3846 (1999).

    CAS  PubMed  Google Scholar 

  56. Rosendaal, F. R. et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb. Haemost. 79, 706–708 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Bosler, D., Mattson, J. & Crisan, D. Phenotypic heterogeneity in patients with homozygous prothrombin 20210AA genotype. A paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J. Mol. Diagn. 8, 420–425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koster, T., Blann, A. D., Briët, E., Vandenbroucke, J. P. & Rosendaal, F. R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 345, 152–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Jenkins, P. V., Rawley, O., Smith, O. P. & O'Donnell, J. S. Elevated factor VIII levels and risk of venous thrombosis. Br. J. Haematol. 157, 653–663 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Kamphuisen, P. W. et al. Familial clustering of factor VIII and von Willebrand factor levels. Thromb. Haemost. 79, 323–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Kamphuisen, P. W. et al. Heritability of elevated factor VIII antigen levels in factor V Leiden families with thrombophilia. Br. J. Haematol. 109, 519–522 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Bank, I. et al. Elevated levels of FVIII:C within families are associated with an increased risk for venous and arterial thrombosis. J. Thromb. Haemost. 3, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Lijfering, W. M. et al. Selective testing for thrombophilia in patients with first venous thrombosis: results from a retrospective family cohort study on absolute thrombotic risk for currently known thrombophilic defects in 2479 relatives. Blood 113, 5314–5322 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Soria, J. M. et al. A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood 101, 163–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Viel, K. R. et al. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 109, 3713–3724 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gill, J. C., Endres-Brooks, J., Bauer, P. J., Marks, W. J. Jr & Montgomery, R. R. The effect of AB0 blood group on the diagnosis of von Willebrand disease. Blood 69, 1691–1695 (1987).

    CAS  PubMed  Google Scholar 

  67. Souto, J. C. et al. Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler. Thromb. Vasc. Biol. 20, 2024–2028 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Sodetz, J. M., Pizzo, S. V. & McKee, P. A. Relationship of sialic acid to function and in vivo survival of human factor VIII/vonWillebrand factor protein. J. Biol. Chem. 252, 5538–5546 (1977).

    CAS  PubMed  Google Scholar 

  69. Dentali, F. et al. Non-O blood type is the commonest genetic risk factor for VTE: results from a meta-analysis of the literature. Semin. Thromb. Hemost. 38, 535–548 (2012).

    Article  PubMed  Google Scholar 

  70. Morelli, V. M., De Visser, M. C., Vos, H. L., Bertina, R. M. & Rosendaal, F. R. AB0 blood group genotypes and the risk of venous thrombosis: effect of factor V Leiden. J. Thromb. Haemost. 3, 183–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Ohira, T. et al. AB0 blood group, other risk factors and incidence of venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology (LITE). J. Thromb. Haemost. 5, 1455–1461 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Cohen, W. et al. AB0 blood group and von Willebrand factor levels partially explained the incomplete penetrance of congenital thrombophilia. Arterioscler. Thromb. Vasc. Biol. 32, 2021–2028 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Spiezia, L. et al. AB0 blood groups and the risk of venous thrombosis in patients with inherited thrombophilia. Blood Transfus. 11, 250–253 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Cunningham, M. T., Brandt, J. T., Laposata, M. & Olson, J. D. Laboratory diagnosis of dysfibrinogenemia. Arch. Pathol. Lab. Med. 126, 499–505 (2002).

    PubMed  Google Scholar 

  75. Mathonnet, F. et al. Three new cases of dysfibrinogenemia: Poissy III, Saint-Germain I and Tahiti. Thromb. Res. 103, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Haverkate, F. & Samama, M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb. Haemost. 73, 151–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Hanss, M. & Biot, F. A database for human fibrinogen variants. Ann. N. Y. Acad. Sci. 936, 89–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Groupe d'Etudes sur l'Hemostase et la Thrombose (GEHT). Le Site Francophone de l'Hémostase. Base de données des variants du Fibrinogène [online], (2013).

  79. Marchi, R. et al. Fibrinogen Caracas V, an abnormal fibrinogen with an Aalpha 532 Ser Cys substitution associated with thrombosis. Thromb. Haemost. 84, 263–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Kotlín, R. et al. Two cases of congenital dysfibrinogenemia associated with thrombosis—Fibrinogen Praha III and Fibrinogen Plzen. Thromb. Haemost. 102, 479–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Uitte de Willige, S. et al. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen γ' levels. Blood 106, 4176–4183 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Grünbacher, G. et al. The fibrinogen gamma (FGG) 10034C>T polymorphism is associated with venous thrombosis. Thromb. Res. 121, 33–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Crawley, J. T. & Lane, D. A. The haemostatic role of tissue factor pathway inhibitor. Arterioscler. Thromb. Vasc. Biol. 28, 233–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Dahm, A., Rosendaal, F. R., Andersen, T. O. & Sandset, P. M. Tissue factor pathway inhibitor anticoagulant activity: risk for venous thrombosis and effect of hormonal state. Br. J. Haematol. 132, 333–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Dahm, A. et al. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 101, 4387–4392 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Hoke, M. et al. Tissue factor pathway inhibitor and the risk of recurrent venous thromboembolism. Thromb. Haemost. 94, 787–790 (2005).

    PubMed  Google Scholar 

  87. Zakai, N. A., Lutsey, P. L., Folsom, A. R., Heckbert, S. R. & Cushman, M. Total tissue factor pathway inhibitor and venous thrombosis: the Longitudinal Investigation of Thromboembolism Etiology. Thromb. Haemost. 104, 207–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Opstad, T. B., Eilertsen, A. L., Høibraaten, E., Skretting, G. & Sandset, P. M. Tissue factor pathway inhibitor polymorphisms in women with and without a history of venous thrombosis and the effects of postmenopausal hormone therapy. Blood Coagul. Fibrinolysis 21, 516–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Koster, T. et al. Factor VII and fibrinogen levels as risk factors for venous thrombosis. A case–control study of plasma levels and DNA polymorphisms: the Leiden Thrombophilia Study (LETS). Thromb. Haemost. 71, 719–722 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Meijers, J. C., Tekelenburg, W. L., Bouma, B. N., Bertina, R. M. & Rosendaal, F. R. High levels of coagulation factor XI as a risk factor for venous thrombosis. N. Engl. J. Med. 342, 696–701 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. van Hylckama Vlieg, A., van der Linden, I. K., Bertina, R. M. & Rosendaal, F. R. High levels of factor IX increase the risk of venous thrombosis. Blood 95, 3678–3682 (2000).

    CAS  PubMed  Google Scholar 

  92. de Visser, M. C., Poort, S. R., Vos, H. L., Rosendaal, F. R. & Bertina, R. M. Factor X levels, polymorphisms in the promoter region of factor X, and the risk of venous thrombosis. Thromb. Haemost. 85, 1011–1017 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Bezemer, I. D. et al. Gene variants associated with deep vein thrombosis. JAMA 299, 1306–1314 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Bezemer, I. D. et al. F9 Malmö, factor IX and deep vein thrombosis. Haematologica 94, 693–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Simioni, P. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N. Engl. J. Med. 361, 1671–1675 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Mazetto Bde, M. et al. Prevalence of factor IX-R338L (factor IX Padua) in a cohort of patients with venous thromboembolism and mild elevation of factor IX levels. Thromb. Res. 126, e165 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Koenderman, J. S., Bertina, R. M., Reitsma, P. H. & de Visser, M. C. Factor IX-R338L (factor IX Padua) screening in a Dutch population of sibpairs with early onset venous thromboembolism. Thromb. Res. 128, 603 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Miyawaki, Y. et al. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N. Engl. J. Med. 366, 2390–2396 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Djordjevic, V. et al. A novel prothrombin mutation in two families with prominent thrombophilia—the first cases of antithrombin resistance in a Caucasian population. J. Thromb. Haemost. 11, 1936–1939 (2013).

    CAS  PubMed  Google Scholar 

  100. Lisman, T., de Groot, P. G., Meijers, J. C. & Rosendaal, F. R. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood 105, 1102–1105 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Meltzer, M. E., Lisman, T., Doggen, C. J., de Groot, P. G & Rosendaal, F. R. Synergistic effects of hypofibrinolysis and genetic and acquired risk factors on the risk of a first venous thrombosis. PLoS Med. 5, e97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meltzer, M. E. et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 116, 113–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Dawson, S. J. et al. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor 1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J. Biol. Chem. 268, 10739–10745 (1993).

    CAS  PubMed  Google Scholar 

  104. Tsantes, A. E. et al. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis. A meta-analysis. Thromb. Haemost. 97, 907–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Ridker, P. M., Hennekens, C. H., Lindpaintner, K., Stampfer, M. J. & Miletich, J. P. Arterial and venous thrombosis is not associated with the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor gene in a large cohort of US men. Circulation 95, 59–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. van Tilburg, N. H., Rosendaal, F. R. & Bertina, R. M. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 95, 2855–2859 (2000).

    CAS  PubMed  Google Scholar 

  107. Libourel, E. J. et al. Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions of factor VIII, factor XI, thrombin activatable fibrinolysis inhibitor and lipoprotein(a) to the absolute risk of venous thromboembolism. Haematologica 87, 1068–1073 (2002).

    CAS  PubMed  Google Scholar 

  108. Henry, M. et al. Identification of polymorphisms in the promoter and the 3′ region of the TAFI gene: evidence that plasma TAFI antigen levels are strongly genetically controlled. Blood 97, 2053–2058 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Eldibany, M. M. & Caprini, J. A. Hyperhomocysteinemia and thrombosis: an overview. Arch. Pathol. Lab. Med. 131, 872–884 (2007).

    CAS  PubMed  Google Scholar 

  110. Ray, J. G. Meta-analysis of hyperhomocysteinemia as a risk factor for venous thromboembolic disease. Arch. Intern. Med. 158, 2101–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Martinelli, I., Bucciarelli, P., Zighetti, M. L., Cafro, A. & Mannucci, P. M. Low risk of thrombosis in family members of patients with hyperhomocysteinaemia. Br. J. Haematol. 117, 709–711 (2002).

    Article  PubMed  Google Scholar 

  112. Clarke, R. et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37,485 individuals. Arch. Intern. Med. 170, 1622–1631 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Bezemer, I. D., Doggen, C. J., Vos, H. L. & Rosendaal, F. R. No association between the common MTHFR 677C T polymorphism and venous thrombosis: results from the MEGA study. Arch. Intern. Med. 167, 497–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Gohil, R., Peck, G. & Sharma, P. The genetics of venous thromboembolism. A meta-analysis involving approximately 120,000 cases and 180,000 controls. Thromb. Haemost. 102, 360–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Simone, B. et al. Risk of venous thromboembolism associated with single and combined effects of factor V Leiden, prothrombin 20210A and methylenetethraydrofolate reductase C677T: a meta-analysis involving over 11,000 cases and 21,000 controls. Eur. J. Epidemiol. 28, 621–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Souto, J. C. et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Am. J. Hum. Genet. 67, 1452–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hasstedt, S. J. et al. Genome scan of venous thrombosis in a pedigree with protein C deficiency. J. Thromb. Haemost. 2, 868–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Wichers, I. M. et al. Assessment of coagulation and fibrinolysis in families with unexplained thrombophilia. Thromb. Haemost. 101, 465–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Reitsma, P. H. & Rosendaal, F. R. Past and future of genetic research in thrombosis. J. Thromb. Haemost. 5 (Suppl. 1), 264–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Bezemer, I. D., Bare, L. A., Arellano, A. R., Reitsma, P. H. & Rosendaal, F. R. Updated analysis of gene variants associated with deep vein thrombosis. JAMA 303, 421–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Trégouët, D. A. et al. Common susceptibility alleles are unlikely to contribute as strongly as the FV and AB0 loci to VTE risk: results from a GWAS approach. Blood 113, 5298–5303 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Germain, M. et al. Genetics of venous thrombosis: insights from a new genome wide association study. PLoS ONE 6, e25581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Heit, J. A. et al. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J. Thromb. Haemost. 10, 1521–1531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tang, W. et al. A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Genet. Epidemiol. 37, 512–521 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. de Visser, M. C. et al. Genome-wide linkage scan in affected sibling pairs identifies novel susceptibility region for venous thromboembolism: Genetics in Familial Thrombosis study. J. Thromb. Haemost. 11, 1474–1484 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Cantor, R. M., Lange, K. & Sinsheimer, J. S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marian, A. J. Molecular genetic studies of complex phenotypes. Transl. Res. 159, 64–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Morange, P. E. et al. A follow-up study of a genome-wide association scan identifies a susceptibility locus for venous thrombosis on chromosome 6p24.1. Am. J. Hum. Genet. 86, 592–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van der Meer, F. J., Koster, T., Vandenbroucke, J. P., Briet, E. & Rosendaal, F. R. The Leiden Thrombophilia Study (LETS). Thromb. Haemost. 78, 631–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Manten, B., Westendorp, R. G., Koster, T., Reitsma, P. H. & Rosendaal, F. R. Risk factor profiles in patients with different clinical manifestations of venous thromboembolism: a focus on the factor V Leiden mutation. Thromb. Haemost. 76, 510–513 (1996).

    CAS  PubMed  Google Scholar 

  131. Bounameaux, H. Factor V Leiden paradox: risk of deep-vein thrombosis but not of pulmonary embolism. Lancet 356, 182–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Rossi, E., Za, T., Ciminello, A., Leone, G. & De Stefano, V. The risk of symptomatic pulmonary embolism due to proximal deep venous thrombosis differs in patients with different types of inherited thrombophilia. Thromb. Haemost. 99, 1030–1034 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. van Stralen, K. J. et al. Mechanisms of the factor V Leiden paradox. Arterioscler. Thromb. Vasc. Biol. 28, 1872–1877 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Mäkelburg, A. B. et al. Different risk of deep vein thrombosis and pulmonary embolism in carriers with factor V Leiden compared with non-carriers, but not in other thrombophilic defects. Results from a large retrospective family cohort study. Haematologica 95, 1030–1033 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Dentali, F. et al. Role of factor V Leiden or G20210A prothrombin mutation in patients with symptomatic pulmonary embolism and deep vein thrombosis: a meta-analysis of the literature. J. Thromb. Haemost. 10, 732–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Kuismanen, K., Savontaus, M. L., Kozlov, A., Vuorio, A. F. & Sajantila, A. Coagulation factor V Leiden mutation in sudden fatal pulmonary embolism and in a general northern European population sample. Forensic Sci. Int. 106, 71–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. van Langevelde, K., Flinterman, L. E., van Hylckama Vlieg, A., Rosendaal, F. R. & Cannegieter, S. C. Broadening the factor V Leiden paradox: pulmonary embolism and deep-vein thrombosis as 2 sides of the spectrum. Blood 120, 933–946 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Decousus, H. et al. Epidemiology, diagnosis, treatment and management of superficial-vein thrombosis of the legs. Best Pract. Res. Clin. Haematol. 25, 275–284 (2012).

    Article  PubMed  Google Scholar 

  139. Martinelli, I. et al. Genetic risk factors for superficial vein thrombosis. Thromb. Haemost. 82, 1215–1217 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Margaglione, M. et al. Inherited thrombophilic risk factors in a large cohort of individuals referred to Italian thrombophilia centers: distinct roles in different clinical settings. Haematologica 86, 634–639 (2001).

    CAS  PubMed  Google Scholar 

  141. Stam, J. Thrombosis of the cerebral vein and sinuses. N. Engl. J. Med. 352, 1791–1798 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Dentali, F., Crowther, M. & Ageno, W. Thrombophilic abnormalities, oral contraceptives, and risk of cerebral vein thrombosis: a meta-analysis. Blood 107, 2766–2773 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Martinelli, I., Battaglioli, T., Pedotti, P., Cattaneo, M. & Mannucci, P. M. Hyperhomocysteinemia in cerebral vein thrombosis. Blood 102, 1363–1366 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Wysokinska, E. M. et al. Thrombophilia differences in cerebral venous sinus and lower extremity deep venous thrombosis. Neurology 70, 627–633 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Treadwell, S. D., Thanvi, B. & Robinson, T. G. Stroke in pregnancy and the puerperium. Postgrad. Med. J. 84, 238–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. De Stefano, V. & Martinelli, I. Abdominal thromboses of splanchnic, renal and ovarian veins. Best Pract. Res. Clin. Haematol. 25, 253–264 (2012).

    Article  PubMed  Google Scholar 

  147. Primignani, M. et al. Risk factors for thrombophilia in extrahepatic portal vein obstruction. Hepatology 41, 603–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Dentali, F., Galli, M., Gianni, M. & Ageno, W. Inherited thrombophilic abnormalities and risk of portal vein thrombosis: a meta-analysis. Thromb. Haemost. 99, 675–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Plessier, A. et al. Acute portal vein thrombosis unrelated to cirrhosis: a prospective multicenter follow-up study. Hepatology 51, 210–218 (2010).

    Article  PubMed  Google Scholar 

  150. Janssen, H. L. et al. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd–Chiari syndrome and portal vein thrombosis: results of a case–control study. Blood 96, 2364–2368 (2000).

    CAS  PubMed  Google Scholar 

  151. Darwish Murad, S. et al. Etiology, management, and outcome of the Budd–Chiari syndrome. Ann. Intern. Med. 151, 167–175 (2009).

    Article  PubMed  Google Scholar 

  152. Martinelli, I., Battaglioli, T., Bucciarelli, P., Passamonti, S. M. & Mannucci, P. M. Risk factors and recurrence rate of primary deep vein thrombosis of the upper extremities. Circulation 110, 566–570 (2004).

    Article  PubMed  Google Scholar 

  153. Laouri, M., Chen, E., Looman, M. & Gallagher, M. The burden of disease of retinal vein occlusion: review of the literature. Eye 25, 981–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Janssen, M. C., den Heijer, M., Cruysberg, J. R., Wollersheim, H. & Bredie, S. J. Retinal vein occlusion: a form of venous thrombosis or a complication of atherosclerosis? A meta-analysis of thrombophilic factors. Thromb. Haemost. 93, 1021–1026 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Rehak, M. et al. The prevalence of activated protein C (APC) resistance and factor V Leiden is significantly higher in patients with retinal vein occlusion without general risk factors: case–control study and meta-analysis. Thromb. Haemost. 99, 925–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. McGimpsey, S. J., Woodside, J. V., Cardwell, C., Cahill, M. & Chakravarthy, U. Homocysteine, methylenetetrahydrofolate reductase C677T polymorphism, and risk of retinal vein occlusion: a meta-analysis. Ophthalmology 116, 1778–1787 (2009).

    Article  PubMed  Google Scholar 

  157. Pabinger, I. et al. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency: a prospective cohort study. Thromb. Haemost. 71, 441–445 (1994).

    CAS  PubMed  Google Scholar 

  158. Sanson, B. J. et al. The incidence of venous thromboembolism in asymptomatic carriers of a deficiency of antithrombin, protein C, or protein S: a prospective cohort study. Blood 94, 3702–3706 (1999).

    CAS  PubMed  Google Scholar 

  159. Middeldorp, S. et al. A prospective study of asymptomatic carriers of the factor V Leiden mutation to determine the incidence of venous thromboembolism. Ann. Intern. Med. 135, 322–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Simioni, P. et al. Incidence of venous thromboembolism in asymptomatic family members who are carriers of factor V Leiden: a prospective cohort study. Blood 99, 1938–1942 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Vossen, C. Y. et al. Risk of a first venous thrombotic event in carriers of a familial thrombophilic defect: the European Prospective Cohort on Thrombophilia (EPCOT). J. Thromb. Haemost. 3, 459–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Coppens, M. et al. A prospective cohort study on the absolute incidence of venous thromboembolism and arterial cardiovascular disease in asymptomatic carriers of the prothrombin 20210A mutation. Blood 108, 2604–2607 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Mahmoodi, B. K. et al. A prospective cohort study on the absolute risks of venous thromboembolism and predictive value of screening asymptomatic relatives of patients with hereditary deficiencies of protein S, protein C or antithrombin. J. Thromb. Haemost. 8, 1193–1200 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Martinelli, I. et al. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood 92, 2353–2358 (1998).

    CAS  PubMed  Google Scholar 

  165. Middeldorp, S. et al. The incidence of venous thromboembolism in family members of patients with factor V Leiden mutation and venous thrombosis. Ann. Intern. Med. 128, 15–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Bucciarelli, P. et al. Risk of venous thromboembolism and clinical manifestations in carriers of antithrombin, protein C, protein S deficiency, or activated protein C resistance: a multicenter collaborative family study. Arterioscler. Thromb. Vasc. Biol. 19, 1026–1033 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Simioni, P. et al. Incidence of venous thromboembolism in families with inherited thrombophilia. Thromb. Haemost. 81, 198–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Lensen, R. P., Bertina, R. M., de Ronde, H., Vandenbroucke, J. P. & Rosendaal, F. R. Venous thrombotic risk in family members of unselected individuals with factor V Leiden. Thromb. Haemost. 83, 817–821 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Martinelli, I. et al. The risk of venous thromboembolism in family members with mutations in the genes of factor V or prothrombin or both. Br. J. Haematol. 111, 1223–1229 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Tirado, I. et al. Contribution of prothrombin 20210A allele and factor V Leiden mutation to thrombosis risk in thrombophilic families with other hemostatic deficiencies. Haematologica 86, 1200–1208 (2001).

    CAS  PubMed  Google Scholar 

  171. Bank, I. et al. Prothrombin 20210A mutation: a mild risk factor for venous thromboembolism but not for arterial thrombotic disease and pregnancy-related complications in a family study. Arch. Intern. Med. 164, 1932–1937 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Tormene, D., Simioni, P., Pagnan, A. & Prandoni, P. The G20210A prothrombin gene mutation: is there room for screening families? J. Thromb. Haemost. 2, 1487–1488 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Brouwer, J. L., Veeger, N. J., Kluin-Nelemans, H. C. & van der Meer, J. The pathogenesis of venous thromboembolism: evidence for multiple interrelated causes. Ann. Intern. Med. 145, 807–815 (2006).

    Article  PubMed  Google Scholar 

  174. Couturaud, F. et al. Incidence of venous thromboembolism in first-degree relatives of patients with venous thromboembolism who have factor V Leiden. Thromb. Haemost. 96, 744–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Rossi, E. et al. In families with inherited thrombophilia the risk of venous thromboembolism is dependent on the clinical phenotype of the proband. Thromb. Haemost. 106, 646–654 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Holzhauer, S. et al. Inherited thrombophilia in children with venous thromboembolism and the familial risk of thromboembolism: an observational study. Blood 120, 1510–1515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bucciarelli, P. et al. Low borderline plasma levels of antithrombin, protein C and protein S are risk factors for venous thromboembolism. J. Thromb. Haemost. 10, 1783–1791 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Middeldorp, S. & van Hylckama Vlieg, A. Does thrombophilia testing help in the clinical management of patients? Br. J. Haematol. 143, 321–335 (2008).

    Article  PubMed  Google Scholar 

  179. Ridker, P. M. et al. Age-specific incidence rates of venous thromboembolism among heterozygous carriers of factor V Leiden mutation. Ann. Intern. Med. 126, 528–531 (1997).

    Article  CAS  PubMed  Google Scholar 

  180. De Stefano, V. et al. Different circumstances of the first venous thromboembolism among younger or older heterozygous carriers of the G20210A polymorphism in the prothrombin gene. Haematologica 88, 61–66 (2003).

    CAS  PubMed  Google Scholar 

  181. De Stefano, V. et al. Thrombosis during pregnancy and surgery in patients with congenital deficiency of antithrombin III, protein C, protein S. Thromb. Haemost. 71, 799–800 (1994).

    Article  CAS  PubMed  Google Scholar 

  182. De Stefano, V. et al. Clinical manifestations and management of inherited thrombophilia: retrospective analysis and follow-up after diagnosis of 238 patients with congenital deficiency of antithrombin III, protein C, protein S. Thromb. Haemost. 72, 352–358 (1994).

    Article  CAS  PubMed  Google Scholar 

  183. Bucciarelli, P. et al. Influence of proband's characteristics on the risk of venous thromboembolism in relatives with factor V Leiden or prothrombin G20210A polymorphisms. Blood 122, 2555–2561 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Demers, C., Ginsberg, J. S., Hirsh, J., Henderson, P. & Blajchman, M. A. Thrombosis in antithrombin-III-deficient persons. Report of a large kindred and literature review. Ann. Intern. Med. 116, 754–761 (1992).

    Article  CAS  PubMed  Google Scholar 

  185. van Boven, H. H., Vandenbroucke, J. P., Briët, E. & Rosendaal, F. R. Gene–gene and gene–environment interactions determine risk of thrombosis in families with inherited antithrombin deficiency. Blood 94, 2590–2594 (1999).

    CAS  PubMed  Google Scholar 

  186. Allaart, C. F. et al. Increased risk of venous thrombosis in carriers of hereditary protein C deficiency defect. Lancet 341, 134–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  187. Pintao, M. C. et al. Protein S levels and the risk of venous thrombosis: results from the MEGA case–control study. Blood 122, 3210–3219 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Wu, O. et al. Screening for thrombophilia in high-risk situations: a meta-analysis and cost-effectiveness analysis. Br. J. Haematol. 131, 80–90 (2005).

    Article  PubMed  Google Scholar 

  189. Mari, D., Mannucci, P. M., Duca, F., Bertolini, S. & Franceschi, C. Mutant factor V (Arg506Gln) in healthy centenarians. Lancet 347, 1044 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. van El, C. G. & Cornel, M. C. for the ESHG Public and Professional Policy Committee. Genetic testing and common disorders in a public health framework. Recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 19, 377–381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Schulman, S. & Tengborn, L. Treatment of venous thromboembolism in patients with congenital deficiency of antithrombin III. Thromb. Haemost. 68, 634–636 (1992).

    Article  CAS  PubMed  Google Scholar 

  192. Liumbruno, G., Bennardello, F., Lattanzio, A., Piccoli, P. & Rossetti, G. Recommendations for the use of antithrombin concentrates and prothrombin complex concentrates. Blood Transfus. 7, 325–334 (2009).

    PubMed  PubMed Central  Google Scholar 

  193. Marlar, R. A., Montgomery, R. R. & Broekmans, A. W. Diagnosis and treatment of homozygous protein C deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S. International Committee on Thrombosis and Haemostasis. J. Pediatr. 114, 528–534 (1989).

    Article  CAS  PubMed  Google Scholar 

  194. De Stefano, V. et al. Replacement therapy with a purified protein C concentrate during initiation of oral anticoagulation in severe protein C congenital deficiency. Thromb. Haemost. 70, 247–249 (1993).

    Article  CAS  PubMed  Google Scholar 

  195. Prandoni, P. et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica 92, 199–205 (2007).

    Article  PubMed  Google Scholar 

  196. Baglin, T., Luddington, R., Brown, K. & Baglin, C. Incidence of recurrent venous thromboembolism in relation to clinical and thrombophilic risk factors: prospective cohort study. Lancet 362, 523–526 (2003).

    Article  PubMed  Google Scholar 

  197. Christiansen, S. C., Cannegieter, S. C., Koster, T., Vandenbroucke, J. P. & Rosendaal, F. R. Thrombophilia, clinical factors, and recurrent venous thrombotic events. JAMA 293, 2352–2361 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Palareti, G. et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Lancet 348, 423–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  199. Fox, B. D., Kahn, S. R., Langleben, D., Eisenberg, M. J. & Shimony, A. Efficacy and safety of novel oral anticoagulants for treatment of acute venous thromboembolism: direct and adjusted indirect meta-analysis of randomised controlled trials. BMJ 345, e7498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Segal, J. B. et al. Predictive value of factor V Leiden and prothrombin G20210A in adults with venous thromboembolism and in family members of those with a mutation: a systematic review. JAMA 301, 2472–2485 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Ho, W. K., Hankey, G. J., Quinlan, D. J. & Eikelboom, J. W. Risk of recurrent venous thromboembolism in patients with common thrombophilia: a systematic review. Arch. Intern. Med. 166, 729–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Marchiori, A., Mosena, L., Prins, M. H. & Prandoni, P. The risk of recurrent venous thromboembolism among heterozygous carriers of factor V Leiden or prothrombin G20210A mutation: a systematic review of prospective studies. Haematologica 92, 1107–1114 (2007).

    Article  PubMed  Google Scholar 

  203. De Stefano, V. et al. The risk of recurrent venous thromboembolism in patients with inherited deficiency of natural anticoagulants antithrombin, protein C, and protein S. Haematologica 91, 695–698 (2006).

    PubMed  Google Scholar 

  204. Brouwer, J. L. et al. High long-term absolute risk of recurrent venous thromboembolism in patients with hereditary deficiencies of protein S, protein C or antithrombin. Thromb. Haemost. 101, 93–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Vossen, C. Y. et al. Recurrence rate after a first venous thrombosis in patients with familial thrombophilia. Arterioscler. Thromb. Vasc. Biol. 25, 1992–1997 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. De Stefano, V. & Rossi, E. Testing for inherited thrombophilia and consequences for antithrombotic prophylaxis in patients with venous thromboembolism and their relatives. A review of the Guidelines from Scientific Societies and Working Groups. Thromb. Haemost. 110, 697–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. National Institute for Health and Care Excellence. Clinical Guideline 144: venous thromboembolic diseases. The management of venous thromboembolic diseases and the role of thrombophilia testing [online], (2012).

  208. Einhäupl, K. et al. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur. J. Neurol. 17, 1229–1235 (2010).

    Article  PubMed  Google Scholar 

  209. DeLeve, L. D., Valla, D. C. & Garcia-Tsao, G. for the American Association for the Study Liver Diseases. Vascular disorders of the liver. Hepatology 49, 1729–1764 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Roach, R. E., Lijfering, W. M., Rosendaal, F. R., Cannegieter, S. C. & le Cessie, S. Sex difference in risk of second but not of first venous thrombosis: paradox explained. Circulation http://dx.doi.org/10.1161/CIRCULATIONAHA.113.004768.

  211. McRae, S., Tran, H., Schulman, S., Ginsberg, J. & Kearon, C. Effect of patient's sex on risk of recurrent venous thromboembolism: a meta-analysis. Lancet 368, 371–378 (2006).

    Article  PubMed  Google Scholar 

  212. Douketis, J. et al. Risk of recurrence after venous thromboembolism in men and women: patient level meta-analysis. BMJ 342, d813 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wu, O. et al. Oral contraceptives, hormone replacement therapy, thrombophilias and risk of venous thromboembolism: a systematic review: the Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Thromb. Haemost. 94, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. van Vlijmen, E. F. et al. Oral contraceptives and the absolute risk of venous thromboembolism in women with single or multiple thrombophilic defects: results from a retrospective family cohort study. Arch. Intern. Med. 167, 282–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Wu, O. Postmenopausal hormone replacement therapy and venous thromboembolism. Gend. Med. 2 (Suppl. A), S18–S27 (2005).

    Article  PubMed  Google Scholar 

  216. Greer, I. A. & Nelson-Piercy, C. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood 106, 401–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Lussana, F. et al. Screening for thrombophilia and antithrombotic prophylaxis in pregnancy: guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). Thromb. Res. 124, e19–e25 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Royal College of Obstetricians and Gynaecologists. Reducing the risk of thrombosis and embolism during pregnancy and the puerperium. Green-Top Guideline No. 37a [online], (2009).

  219. Scottish Intercollegiate Guidelines Network. Prevention and management of venous thromboembolism: a national clinical guideline. SIGN publication 122 [online], (2010).

  220. Lockwood, C. & Wendel, G. for the Committee on Practice Bulletins—Obstetrics. Practice bulletin no. 124: inherited thrombophilias in pregnancy. Obstet. Gynecol. 118, 730–740 (2011).

    Article  Google Scholar 

  221. Tormene, D. et al. The G20210A prothrombin variant and the risk of venous thromboembolism or fetal loss in pregnant women: a family study. J. Thromb. Haemost. 5, 2193–2196 (2007).

    Article  CAS  PubMed  Google Scholar 

  222. Martinelli, I. et al. The risk of first venous thromboembolism during pregnancy and puerperium in double heterozygotes for factor V Leiden and prothrombin G20210A. J. Thromb. Haemost. 6, 494–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  223. McLintock, C. et al. Recommendations for the prevention of pregnancy-associated venous thromboembolism. Aust. N. Z. J. Obstet. Gynaecol. 52, 3–13 (2012).

    Article  PubMed  Google Scholar 

  224. Bates, S. M. et al. American College of Chest Physicians. VTE, thrombophilia, antithrombotic therapy, and pregnancy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 141 (2 Suppl.), e691S–e736S (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. De Stefano, V., Grandone, E. & Martinelli, I. Recommendations for prophylaxis of pregnancy-related venous thromboembolism in carriers of inherited thrombophilia. Comment on the 2012 ACCP guidelines. J. Thromb. Haemost. 11, 1779–1781 (2013).

    Article  CAS  PubMed  Google Scholar 

  226. Johnson, N. V., Khor, B. & Van Cott, E. M. Advances in laboratory testing for thrombophilia. Am. J. Hematol. 87, S108–S112 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Frezzato, M., Tosetto, A. & Rodeghiero, F. Validated questionnaire for the identification of previous personal or familial venous thromboembolism. Am. J. Epidemiol. 143, 1257–1265 (1996).

    Article  CAS  PubMed  Google Scholar 

  228. Wilson, B. J. et al. Systematic review: family history in risk assessment for common diseases. Ann. Intern. Med. 151, 878–885 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and contributed substantially to the discussion of content. I. Martinelli wrote the first draft of the article; V. De Stefano and P. M. Mannucci contributed to writing subsequent drafts. All the authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Pier M. Mannucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinelli, I., De Stefano, V. & Mannucci, P. Inherited risk factors for venous thromboembolism. Nat Rev Cardiol 11, 140–156 (2014). https://doi.org/10.1038/nrcardio.2013.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing