Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Effects of opium consumption on cardiometabolic diseases

Abstract

Opium is the second-most-commonly abused substance (after tobacco) in developing countries of the Middle East region, and in many Asian nations. One of the reasons for the high prevalence of opium abuse in these countries is a traditional belief among Eastern people, even including some medical staff, that opium might have beneficial effects on cardiovascular health and in the control of diabetes mellitus, hypertension, and dyslipidaemia. In this Perspectives article, we summarize the current understanding of the pharmacotoxicology of opium and its specific effects on glycaemic control, blood pressure, lipid profile, and atherosclerosis. On the basis of the available evidence, we believe not only that opium has no ameliorating effect on cardiovascular diseases, but also that the use of this drug might have adverse effects on these conditions. Therefore, people should be educated about the hazardous effects of opium consumption on cardiometabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kulsudjarit, K. Drug problem in southeast and southwest Asia. Ann. NY Acad. Sci. 1025, 446–457 (2004).

    Article  PubMed  Google Scholar 

  2. Karbakhsh, M. & Salehian Zandi, N. Acute opiate overdose in Tehran: the forgotten role of opium. Addict. Behav. 32, 1835–1842 (2007).

    Article  PubMed  Google Scholar 

  3. United Nations Office on Drugs and Crime. World Drug Report 2012 [online], (2012).

  4. Mohammadi, A. et al. Effect of opium addiction on lipid profile and atherosclerosis formation in hypercholesterolemic rabbits. Exp. Toxicol. Pathol. 61, 145–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Karam, G. A. et al. Effects of opium addiction on some serum factors in addicts with non-insulin-dependent diabetes mellitus. Addict. Biol. 9, 53–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Sadr Bafghi, S. M. et al. Is opium addiction a risk factor for acute myocardial infarction? Acta Med. Iran. 43 218–222 (2005).

    Google Scholar 

  7. Farahani, M. A., Mohammadi, E., Ahmadi, F., Maleki, M. & Hajizadeh, E. Cultural barriers in the education of cardiovascular disease patients in Iran. Int. Nurs. Rev. 55, 360–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Richards, J. F. in Opium and the British Indian Empire: The Royal Commission of 1895 [online], (Cambridge University Press, 2001).

    Google Scholar 

  9. Chopra, R. N. & Chopra, I. C. in Quasi-medical Use of Opium in India and Its Effects [online], (UNODC, 1955).

    Google Scholar 

  10. Hosseini, S. K. et al. Opium consumption and coronary atherosclerosis in diabetic patients: a propensity score-matched study. Planta Med. 77, 1870–1875 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Schiff, P. L. Jr. Opium and its alkaloids. Am. J. Pharm. Educ. 66, 186–194 (2002).

    Google Scholar 

  12. Buchbauer, G., Nikiforov, A. & Remberg, B. Headspace constituents of opium. Planta Med. 60, 181–183 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Traynor, J. μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend. 121, 173–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Kalant, H. Opium revisited: a brief review of its nature, composition, non-medical use and relative risks. Addiction 92, 267–277 (1997).

    CAS  PubMed  Google Scholar 

  15. Asgary, S., Sarrafzadegan, N., Naderi, G. A. & Rozbehani, R. Effect of opium addiction on new and traditional cardiovascular risk factors: do duration of addiction and route of administration matter? Lipids Health Dis. 7, 42 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Helmstädter, A. Antidiabetic drugs used in Europe prior to the discovery of insulin. Pharmazie 62, 717–720 (2007).

    PubMed  Google Scholar 

  17. Azod, L., Rashidi, M., Afkhami-Ardekani, M., Kiani, G. & Khoshkam, F. Effect of opium addiction on diabetes. Am. J. Drug Alcohol Abuse 34, 383–388 (2008).

    Article  PubMed  Google Scholar 

  18. George, S., Murali, V. & Pullickal, R. Review of neuroendocrine correlates of chronic opiate misuse. Addict. Disord. Their Treat. 4, 99–109 (2005).

    Article  Google Scholar 

  19. Sheldon, B. H. & Quin, J. D. Diabetes and illicit drug use. Practical Diabetes Int. 22, 222–224 (2005).

    Article  Google Scholar 

  20. Najafi, M. & Sheikhvatan, M. Plausible impact of dietary habits on reduced blood sugar in diabetic opium addicts with coronary artery disease. Iran. Cardiovasc. Res. J. 6, 75–78 (2012).

    Google Scholar 

  21. Kouros, D., Tahereh, H., Mohammadreza, A. & Minoo, M. Z. Opium and heroin alter biochemical parameters of human's serum. Am. J. Drug Alcohol Abuse 36, 135–139 (2010).

    Article  PubMed  Google Scholar 

  22. Dehghani, F., Masoomi, M. & Haghdoost, A. A. Relation of opium addiction with the severity and extension of myocardial infarction and its related mortality. Addict. Health 5, 1–7 (2013).

    Google Scholar 

  23. Mami, S. et al. Effect of opium addiction on some serum parameters in rabbit. Global Veterinaria 7, 310–314 (2011).

    CAS  Google Scholar 

  24. Karam, G. A. et al. Opium can differently alter blood glucose, sodium and potassium in male and female rats. Pak. J. Pharm. Sci. 21, 180–184 (2008).

    CAS  PubMed  Google Scholar 

  25. Sadeghian, S. et al. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes. Endokrynol. Pol. 60, 258–262 (2009).

    CAS  PubMed  Google Scholar 

  26. Radosevich, P. M. et al. Effects of morphine on glucose homeostasis in the conscious dog. J. Clin. Invest. 74, 1473–1480 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Romsos, D. R., Gosnell, B. A., Morley, J. E. & Levine, A. S. Effects of kappa opiate agonists, cholecystokinin and bombesin on intake of diets varying in carbohydrate-to-fat ratio in rats. J. Nutr. 117, 976–985 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Bryant, H. U., Kuta, C. C., Story, J. A. & Yim, G. K. Stress- and morphine-induced elevations of plasma and tissue cholesterol in mice: reversal by naltrexone. Biochem. Pharmacol. 37, 3777–3780 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Bryant, H. U., Story, J. A. & Yim, G. K. Morphine-induced alterations in plasma and tissue cholesterol levels. Life Sci. 41, 545–554 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Davoodi, G. et al. Comparison of specifications, short-term outcome and prognosis of acute myocardial infarction in opium dependent patients and nondependents. Ger. J. Psych. 8, 33–37 (2005).

    Google Scholar 

  31. Najafipour, H., Joukar, S., Malekpour-Afshar, R., Mirzaeipour, F. & Nasri, H. R. Passive opium smoking does not have beneficial effect on plasma lipids and cardiovascular indices in hypercholesterolemic rabbits with ischemic and non-ischemic hearts. J. Ethnopharmacol. 127, 257–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Roohafza, H. et al. Opium decreases the age at myocardial infarction and sudden cardiac death: a long- and short-term outcome evaluation. Arch. Iran. Med. 16, 154–160 (2013).

    CAS  PubMed  Google Scholar 

  33. Hillard, C. J. Lipids and drugs of abuse. Life Sci. 77, 1531–1542 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, S. H. et al. Association between cholesterol plasma levels and craving among heroin users. J. Addict. Med. 6, 287–291 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. May, C. N., Ham, I. W., Heslop, K. E., Stone, F. A. & Mathias, C. J. Intravenous morphine causes hypertension, hyperglycaemia and increases sympatho-adrenal outflow in conscious rabbits. Clin. Sci. (Lond.) 75, 71–77 (1988).

    Article  CAS  Google Scholar 

  36. May, C. N., Dashwood, M. R., Whitehead, C. J. & Mathias, C. J. Differential cardiovascular and respiratory responses to central administration of selective opioid agonists in conscious rabbits: correlation with receptor distribution. Br. J. Pharmacol. 98, 903–913 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. May, C. N., Whitehead, C. J. & Mathias, C. J. The pressor response to central administration of beta-endorphin results from a centrally mediated increase in noradrenaline release and adrenaline secretion. Br. J. Pharmacol. 102, 639–644 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoehe, M. & Duka, T. Opiates increase plasma catecholamines in humans. Psychoneuroendocrinology 18, 141–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. da Cunha, A. F. et al. Intrathecal morphine overdose in a dog. J. Am. Vet. Med. Assoc. 230, 1665–1668 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Shanazari, A. A., Aslani, Z., Ramshini, E. & Alaei, H. Acute and chronic effects of morphine on cardiovascular system and the baroreflexes sensitivity during severe increase in blood pressure in rats. ARYA Atheroscler. 7, 111–117 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Marmor, M., Penn, A., Widmer, K., Levin, R. I. & Maslansky, R. Coronary artery disease and opioid use. Am. J. Cardiol. 93, 1295–1297 (2004).

    Article  PubMed  Google Scholar 

  42. Sadeghian, S. et al. The association of opium with coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 14, 715–717 (2007).

    Article  PubMed  Google Scholar 

  43. Sadeghian, S. et al. Opium consumption in men and diabetes mellitus in women are the most important risk factors of premature coronary artery disease in Iran. Int. J. Cardiol. 141, 116–118 (2010).

    Article  PubMed  Google Scholar 

  44. Gensini, G. G. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 51, 606 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Masoomi, M., Arash Ramezani, M. & Karimzadeh, H. The relationship of opium addiction with coronary artery disease. Int. J. Prev. Med. 1, 182–186 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Masoumi, M., Shahesmaeili, A., Mirzazadeh, A., Tavakoli, M. & Ali, A. Z. Opium addiction and severity of coronary artery disease: a case–control study. J. Res. Med. Sci. 15, 27–32 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Hosseini, S. A., Abdollahi, A. A., Behnampour, N. & Salehi, A. The relationship between coronary risk factors and coronary artery involvement based on angiography findings. Koomesh 14, 7–12 (2012).

    Google Scholar 

  48. Rezvani, M. R. & Ghandehari, K. Is opium addiction a risk factor for ischemic heart disease and ischemic stroke? J. Res. Med. Sci. 17, 958–961 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Azimzade-Sarwar, B., Yousefzade, G. & Narooey, S. A case–control study of effect of opium addiction on myocardial infarction. Am. J. Appl. Sci. 2, 1134–1135 (2005).

    Article  Google Scholar 

  50. Khosoosi Niaki, M. R., Mahdizadeh, H., Farshidi, F., Mohammadpour, M. & Salehi Omran, M. T. Evaluation of the role of opium addiction in acute myocardial infarction as a risk factor. Caspian J. Intern. Med. 4, 585–589 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Safaei, N. Outcomes of coronary artery bypass grafting in patients with a history of opiate use. Pak. J. Biol. Sci. 11, 2594–2598 (2008).

    Article  PubMed  Google Scholar 

  52. Li, L., Setoguchi, S., Cabral, H. & Jick, S. Opioid use for noncancer pain and risk of myocardial infarction amongst adults. J. Intern. Med. 273, 511–526 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Khademi, H. et al. Opium use and mortality in Golestan Cohort Study: prospective cohort study of 50,000 adults in Iran. BMJ 344, e2502 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Morris, P. D. & Channer, K. S. Testosterone and cardiovascular disease in men. Asian J. Androl. 14, 428–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pappa, T. & Alevizaki, M. Endogenous sex steroids and cardio- and cerebro-vascular disease in the postmenopausal period. Eur. J. Endocrinol. 167, 145–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Moshtaghi-Kashanian, G. R., Esmaeeli, F. & Dabiri, S. Enhanced prolactin levels in opium smokers. Addict. Biol. 10, 345–349 (2006).

    Article  Google Scholar 

  57. Sauro, M. D. & Zorn, N. E. Prolactin induces proliferation of vascular smooth muscle cells through a protein kinase C-dependent mechanism. J. Cell. Physiol. 148, 133–138 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Granér, M., Syvänne, M., Kahri, J., Nieminen, M. S. & Taskinen, M. R. Insulin resistance as predictor of the angiographic severity and extent of coronary artery disease. Ann. Med. 39, 137–144 (2007).

    Article  PubMed  Google Scholar 

  59. An, X. et al. Insulin resistance predicts progression of de novo atherosclerotic plaques in patients with coronary heart disease: a one-year follow-up study. Cardiovasc. Diabetol. 11, 71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh, S. K., Suresh, M. V., Voleti, B. & Agrawal, A. The connection between C-reactive protein and atherosclerosis. Ann. Med. 40, 110–120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Danesh, J. et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294, 1799–1809 (2005).

    CAS  PubMed  Google Scholar 

  62. Schmidt, C. & Fagerberg, B. ApoB/apoA-I ratio is related to femoral artery plaques in 64-year-old women also in cases with low LDL cholesterol. Atherosclerosis 196, 817–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Masoudkabir, F. et al. The association of liver transaminase activity with presence and severity of premature coronary artery disease. Angiology 62, 614–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Adibi, P., Sadeghi, M., Mahsa, M., Rozati, G. & Mohseni, M. Prediction of coronary atherosclerotic disease with liver transaminase level. Liver Int. 27, 895–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ioannou, G. N., Weiss, N. S., Boyko, E. J., Mozaffarian, D. & Lee, S. P. Elevated serum alanine aminotransferase activity and calculated risk of coronary heart disease in the United States. Hepatology 43, 1145–1151 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Ford, I. et al. The inverse relationship between alanine aminotransferase in the normal range and adverse cardiovascular and non-cardiovascular outcomes. Int. J. Epidemiol. 40, 1530–1538 (2011).

    Article  PubMed  Google Scholar 

  67. Rocha, V. Z. & Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 6, 399–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Ghazavi, A., Solhi, H., Moazzeni, S. M., Rafiei, M. & Mosayebi, G. Cytokine profiles in long-term smokers of opium (Taryak). J. Addict. Med. 7, 200–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Saadat, H. et al. Opium addiction increases interleukin 1 receptor antagonist (IL-1Rα) in the coronary artery disease patients. PLoS ONE 7, e44939 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ozkanlar, S. & Akcay, F. Antioxidant vitamins in atherosclerosis—animal experiments and clinical studies. Adv. Clin. Exp. Med. 21, 115–123 (2012).

    PubMed  Google Scholar 

  71. Pereska, Z., Dejanova, B., Bozinovska, C. & Petkovska, L. Prooxidative/antioxidative homeostasis in heroin addiction and detoxification. Bratisl. Lek. Listy. 108, 393–398 (2007).

    CAS  PubMed  Google Scholar 

  72. Blair, S. N. & Morris, J. N. Healthy hearts—and the universal benefits of being physically active: physical activity and health. Ann. Epidemiol. 19, 253–256 (2009).

    Article  PubMed  Google Scholar 

  73. Held, C. et al. Physical activity levels, ownership of goods promoting sedentary behaviour and risk of myocardial infarction: results of the INTERHEART study. Eur. Heart J. 33, 452–466 (2012).

    Article  PubMed  Google Scholar 

  74. Masoomi, M., Zare, J., Nasri, H., Mirzazadeh, A. & Sheikhvatan, M. Abrupt opium discontinuation has no significant triggering effect on acute myocardial infarction. J. Cardiovasc. Med. (Hagerstown) 12, 234–238 (2011).

    Article  Google Scholar 

  75. Mahoodi, M. et al. Opium withdrawal and some blood biochemical factors in addicts' individuals. Adv. Biol. Chem. 2, 167–170 (2012).

    Article  Google Scholar 

  76. Fatemi, S. S., Hasanzadeh, M., Arghami, A. & Sargolzaee, M. R. Lipid profile comparison between opium addicts and non-addicts. J. Teh. Univ. Heart Ctr. 3, 169–172 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

N. Sarrafzadegan is currently on sabbatical at the Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Author information

Authors and Affiliations

Authors

Contributions

F. Masoudkabir and N. Sarrafzadegan researched data for the article, and all the authors discussed its content. F. Masoudkabir wrote the article, and all the authors revised/edited the manuscript before submission.

Corresponding author

Correspondence to Nizal Sarrafzadegan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoudkabir, F., Sarrafzadegan, N. & Eisenberg, M. Effects of opium consumption on cardiometabolic diseases. Nat Rev Cardiol 10, 733–740 (2013). https://doi.org/10.1038/nrcardio.2013.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing