Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Demystifying the management of hypertriglyceridaemia

Key Points

  • Hypertriglyceridaemia is a common indicator of cardiometabolic risk factors and atherosclerotic cardiovascular disease (CVD)

  • Hypertriglyceridaemia can be caused by genetic and nongenetic factors, such as obesity, insulin resistance, and type 2 diabetes mellitus

  • Moderately elevated plasma triglyceride concentrations (1.7–5.0 mmol/l) reflect the accumulation of triglyceride-rich lipoprotein (TRL) remnants and small dense LDL particles that are highly atherogenic

  • Treatment of hypertriglyceridaemia involves correction of secondary factors and unhealthy lifestyle habits; pharmacotherapy is indicated for patients with established CVD or those at moderate-to-high risk of CVD

  • Statin therapy is the cornerstone of pharmacological treatment for hypertriglyceridaemia, followed by fibrates and n-3 fatty acids to achieve recommended target levels of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B-100 in plasma

  • Several agents that regulate TRL metabolism are in development, but their clinical efficacy, safety, cost-effectiveness, and indications are yet to be established

Abstract

Hypertriglyceridaemia (typical triglyceride level 1.7–5.0 mmol/l) is caused by interactions between many genetic and nongenetic factors, and is a common risk factor for atherosclerotic cardiovascular disease (CVD). Patients with hypertriglyceridaemia usually present with obesity, insulin resistance, hepatic steatosis, ectopic fat deposition, and diabetes mellitus. Hypertriglyceridaemia reflects the accumulation in plasma of proatherogenic lipoproteins, triglyceride-rich lipoprotein (TRL) remnants, and small, dense LDL particles. Mendelian randomization studies and research on inherited dyslipidaemias, such as type III dysbetalipoproteinaemia, testify that TRLs are causally related to atherosclerotic CVD. Extreme hypertriglyceridaemia (a triglyceride level >20 mmol/l) is rare, often monogenic in aetiology, and frequently causes pancreatitis. Treatment of hypertriglyceridaemia relies on correcting secondary factors and unhealthy lifestyle habits, particularly poor diet and lack of exercise. Pharmacotherapy is indicated for patients with established CVD or individuals at moderate-to-high risk of CVD, primarily those with metabolic syndrome or diabetes. Statins are the cornerstone of treatment, followed by fibrates and n-3 fatty acids, to achieve recommended therapeutic levels of plasma LDL cholesterol, non-HDL cholesterol, and apolipoprotein (apo) B-100. The case for using niacin has been weakened by the results of clinical trials, but needs further investigation. Extreme hypertriglyceridaemia requires strict dietary measures, and patients with a diagnosis of genetic lipoprotein lipase deficiency might benefit from LPL gene replacement therapy. Several therapies for regulating TRL metabolism, including inhibitors of diacylglycerol O-acyltransferase and microsomal triglyceride transfer protein, and apoC-III antisense oligonucleotides, merit further investigation in patients with hypertriglyceridaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of atherogenic dyslipidaemia in the setting of hypertriglyceridaemia, insulin resistance, and hepatic steatosis; central obesity and type 2 diabetes mellitus are common clinical phenotypes.
Figure 2: Hypertriglyceridaemia, triglyceride-rich lipoproteins, and atherogenesis.
Figure 3: Non-HDL-cholesterol concentration in plasma is the sum of cholesterol in triglyceride-rich lipoproteins (chylomicrons, chylomicron remnants, VLDL and IDL) and LDL, which can be estimated by subtracting the HDL-cholesterol concentration from the total plasma cholesterol concentration.
Figure 4: Algorithm for managing dyslipidaemia in patients at high risk of cardiovascular disease.

Similar content being viewed by others

References

  1. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

    CAS  PubMed  Google Scholar 

  2. Tiyyagura, S. & Smith, D. Standard lipid profile. Clin. Lab. Med. 26, 707–732 (2006).

    Article  PubMed  Google Scholar 

  3. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Mihaylova, B. et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Reiner, Z. et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    Article  PubMed  Google Scholar 

  6. Goldberg, I. J., Eckel, R. H. & McPherson, R. Triglycerides and heart disease: still a hypothesis? Arterioscler. Thromb. Vasc. Biol. 31, 1716–1725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Durrington, P. Triglycerides are more important in atherosclerosis than epidemiology has suggested. Atherosclerosis 141 (Suppl. 1), S57–S62 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Phillips, A. N. & Smith, G. D. How independent are “independent” effects? Relative risk estimation when correlated exposures are measured imprecisely. J. Clin. Epidemiol. 44, 1223–1231 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Miller, M. et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 2292–2333 (2011).

    Article  PubMed  Google Scholar 

  10. Chapman, M. J. et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J. 32, 1345–1361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 106, 3143–3421 (2002).

  12. Berglund, L. et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 2969–2989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson, T. J. et al. 2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 29, 151–167 (2013).

    Article  PubMed  Google Scholar 

  14. Teramoto, T. et al. Executive summary of Japan Atherosclerosis Society (JAS). Guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan—2012 version. J. Atheroscler. Thromb. 20, 517–523 (2013).

    Article  PubMed  Google Scholar 

  15. Shimano, H. et al. Proposed guidelines for hypertriglyceridemia in Japan with non-HDL cholesterol as the second target. J. Atheroscler. Thromb. 15, 116–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Gotoda, T. et al. Diagnosis and management of type I and type V hyperlipoproteinemia. J. Atheroscler. Thromb. 19, 1–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Leiter, L. A. et al. Persistent lipid abnormalities in statin-treated patients with diabetes mellitus in Europe and Canada: results of the Dyslipidaemia International Study. Diabet. Med. 28, 1343–1351 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Brunzell, J. D. Clinical practice. Hypertriglyceridemia. N. Engl. J. Med. 357, 1009–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Johansen, C. T. & Hegele, R. A. The complex genetic basis of plasma triglycerides. Curr. Atheroscler. Rep. 14, 227–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Johansen, C. T., Kathiresan, S. & Hegele, R. A. Genetic determinants of plasma triglycerides. J. Lipid Res. 52, 189–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Surendran, R. P. et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J. Intern. Med. 272, 185–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johansen, C. T. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 42, 684–687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Durrington, P. Dyslipidaemia. Lancet 362, 717–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Brouwers, M. C., van Greevenbroek, M. M., Stehouwer, C. D., de Graaf, J. & Stalenhoef, A. F. The genetics of familial combined hyperlipidaemia. Nat. Rev. Endocrinol. 8, 352–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Hopkins, P. N. et al. Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case–control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation 108, 519–523 (2003).

    Article  PubMed  Google Scholar 

  26. Voors-Pette, C. & de Bruin, T. W. Excess coronary heart disease in familial combined hyperlipidemia, in relation to genetic factors and central obesity. Atherosclerosis 157, 481–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kissebah, A. H., Alfarsi, S. & Evans, D. J. Low density lipoprotein metabolism in familial combined hyperlipidemia. Mechanism of the multiple lipoprotein phenotypic expression. Arteriosclerosis 4, 614–624 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Veerkamp, M. J., de Graaf, J., Hendriks, J. C., Demacker, P. N. & Stalenhoef, A. F. Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study. Circulation 109, 2980–2985 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Dionne, C. et al. Genetic epidemiology of lipoprotein lipase deficiency in Saguenay-Lac-St-Jean (Québec, Canada). Ann. Genet. 35, 89–92 (1992).

    CAS  PubMed  Google Scholar 

  30. Blom, D. J. & Marais, A. D. Severe hypertriglyceridemia in a patient with lupus. Am. J. Med. 118, 443–444 (2005).

    Article  PubMed  Google Scholar 

  31. Leaf, D. A. Chylomicronemia and the chylomicronemia syndrome: a practical approach to management. Am. J. Med. 121, 10–12 (2008).

    Article  PubMed  Google Scholar 

  32. Chan, D. C. & Watts, G. F. Dyslipidaemia in the metabolic syndrome and type 2 diabetes: pathogenesis, priorities, pharmacotherapies. Expert Opin. Pharmacother. 12, 13–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Taskinen, M. R. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46, 733–749 (2003).

    Article  PubMed  Google Scholar 

  34. Davidson, M. H. et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J. Clin. Lipidol. 5, 338–367 (2011).

    Article  PubMed  Google Scholar 

  35. Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao, C., Hsieh, J., Adeli, K. & Lewis, G. F. Gut–liver interaction in triglyceride-rich lipoprotein metabolism. Am. J. Physiol. Endocrinol. Metab. 301, E429–E446 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Adiels, M., Olofsson, S. O., Taskinen, M. R. & Borén, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 1225–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221–1231 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Britton, K. A. & Fox, C. S. Ectopic fat depots and cardiovascular disease. Circulation 124, e837–e841 (2011).

    Article  PubMed  Google Scholar 

  40. Borén, J., Taskinen, M. R. & Olofsson, S. O. & Levin, M. Ectopic lipid storage and insulin resistance: a harmful relationship. J. Intern. Med. 274, 25–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Granér, M. et al. Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J. Clin. Endocrinol. Metab. 98, 1189–1197 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Ooi, E. M., Barrett, P. H., Chan, D. C. & Watts, G. F. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin. Sci. 114, 611–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Taskinen, M. R. et al. Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler. Thromb. Vasc. Biol. 31, 2144–2150 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Rashid, S., Watanabe, T., Sakaue, T. & Lewis, G. F. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin. Biochem. 36, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Arsenault, B. J. et al. HDL particle size and the risk of coronary heart disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. Atherosclerosis 206, 276–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Di Angelantonio, E. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Johansen, C. T. & Hegele, R. A. Using Mendelian randomization to determine causative factors in cardiovascular disease. J. Intern. Med. 273, 44–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Jørgensen, A. B. et al. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur. Heart J. 34, 1826–1833 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Sarwar, N. et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 375, 1634–1639 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Miller, M. et al. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J. Am. Coll. Cardiol. 51, 724–730 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Faergeman, O. et al. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am. J. Cardiol. 104, 459–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Boekholdt, S. M. et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 307, 1302–1309 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Zilversmit, D. B. Atherogenesis: a postprandial phenomenon. Circulation 60, 473–485 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Nordestgaard, B. G. & Nielsen, L. B. Atherosclerosis and arterial influx of lipoproteins. Curr. Opin. Lipidol. 5, 252–257 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Tabas, I., Williams, K. J. & Borén, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Goldstein, J. L., Ho, Y. K., Brown, M. S., Innerarity, T. L. & Mahley, R. W. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta-very low density lipoproteins. J. Biol. Chem. 255, 1839–1848 (1980).

    CAS  PubMed  Google Scholar 

  58. Zheng, X. Y. & Liu, L. Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J. Lipid Res. 48, 1673–1680 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kohler, H. P. & Grant, P. J. Plasminogen-activator inhibitor type 1 and coronary artery disease. N. Engl. J. Med. 342, 1792–1801 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Moyer, M. P. et al. Plasma lipoproteins support prothrombinase and other procoagulant enzymatic complexes. Arterioscler. Thromb. Vasc. Biol. 18, 458–465 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Alipour, A. et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28, 792–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, L. et al. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J. Lipid Res. 50, 204–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolovou, G. D. et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr. Vasc. Pharmacol. 9, 258–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Nordestgaard, B. G., Benn, M., Schnohr, P. & Tybjaerg-Hansen, A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298, 299–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. International Atherosclerosis Society. IAS Position Paper: Global Recommendations for the Management of Dyslipidemia [online], (2013).

  66. Jiang, R. et al. Non-HDL cholesterol and apolipoprotein B predict cardiovascular disease events among men with type 2 diabetes. Diabetes Care 27, 1991–1997 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Ridker, P. M., Rifai, N., Cook, N. R., Bradwin, G. & Buring, J. E. Non-HDL cholesterol, apolipoproteins A-I and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA 294, 326–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Lu, W. et al. Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes: the Strong Heart Study. Diabetes Care 26, 16–23 (2003).

    Article  PubMed  Google Scholar 

  69. Cui, Y. et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch. Intern. Med. 161, 1413–1419 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Walldius, G. et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358, 2026–2033 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Cole, T. G. et al. Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices. Clin. Chem. 59, 752–770 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Sniderman, A., Couture, P. & de Graaf, J. Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat. Rev. Endocrinol. 6, 335–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Sniderman, A. D., Williams, K., McQueen, M. J. & Furberg, C. D. When is equal not equal? J. Clin. Lipidol. 4, 83–88 (2010).

    Article  PubMed  Google Scholar 

  74. van Gaal, L. F., Wauters, M. A. & De Leeuw, I. H. The beneficial effects of modest weight loss on cardiovascular risk factors. Int. J. Obes. Relat. Metab. Disord. 21 (Suppl. 1), S5–S9 (1997).

    PubMed  Google Scholar 

  75. Dattilo, A. M. & Kris-Etherton, P. M. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am. J. Clin. Nutr. 56, 320–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Sacks, F. M. et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 360, 859–873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 359, 229–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Mensink, R. P., Zock, P. L., Kester, A. D. & Katan, M. B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77, 1146–1155 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Schaefe, E. J. Lipoproteins, nutrition, and heart disease. Am. J. Clin. Nutr. 75, 191–212 (2002).

    Article  Google Scholar 

  80. Appel, L. J. et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 294, 2455–2464 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Livesey, G. & Taylor, R. Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am. J. Clin. Nutr. 88, 1419–1437 (2008).

    CAS  PubMed  Google Scholar 

  82. Anderson, J. W., Randles, K. M., Kendall, C. W. & Jenkins, D. J. Carbohydrate and fiber recommendations for individuals with diabetes: a quantitative assessment and meta-analysis of the evidence. J. Am. Coll. Nutr. 23, 5–17 (2004).

    Article  PubMed  Google Scholar 

  83. Rumawas, M. E., Meigs, J. B., Dwyer, J. T., McKeown, N. M. & Jacques, P. F. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 90, 1608–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Wing, R. R. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 34, 1481–1486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Braith, R. W. & Stewart, K. J. Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 113, 2642–2650 (2006).

    Article  PubMed  Google Scholar 

  88. Hannuksela, M. L., Liisanantti, M. K. & Savolainen, M. J. Effect of alcohol on lipids and lipoproteins in relation to atherosclerosis. Crit. Rev. Clin. Lab. Sci. 39, 225–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Wing, R. R. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Stein, E. A., Lane, M. & Laskarzewski, P. Comparison of statins in hypertriglyceridemia. Am. J. Cardiol. 81, 66B–69B (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Ginsberg, H. N. Efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia. J. Clin. Endocrinol. Metab. 91, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Deedwania, P. C. et al. Effects of rosuvastatin, atorvastatin, simvastatin, and pravastatin on atherogenic dyslipidemia in patients with characteristics of the metabolic syndrome. Am. J. Cardiol. 95, 360–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kearney, P. M. et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371, 117–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Robinson, J. G., Wang, S., Smith, B. J. & Jacobson, T. A. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J. Am. Coll. Cardiol. 53, 316–322 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Athyros, V. G. et al. Atorvastatin decreases triacylglycerol-associated risk of vascular events in coronary heart disease patients. Lipids 42, 999–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Puri, R. et al. Factors underlying regression of coronary atheroma with potent statin therapy. Eur. Heart J. 34, 1818–1825 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Watts, G. F. & Karpe, F. Triglycerides and atherogenic dyslipidaemia: extending treatment beyond statins in the high-risk cardiovascular patient. Heart 97, 350–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Ginsberg, H. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Article  PubMed  Google Scholar 

  99. Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Chapman, M. J., Redfern, J. S., McGovern, M. E. & Giral, P. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol. Ther. 126, 314–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Watts, G. F. et al. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes 52, 803–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987).

    Article  CAS  PubMed  Google Scholar 

  104. Manninen, V. et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 85, 37–45 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Rubins, H. B. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 341, 410–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Rubin, H. B. et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch. Intern. Med. 162, 2597–2604 (2002).

    Article  Google Scholar 

  107. The BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) Study. Circulation 102, 21–27 (2000).

  108. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9,795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Scott, R. et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 32, 493–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sacks, F. M., Carey, V. J. & Fruchart, J. C. Combination lipid therapy in type 2 diabetes. N. Engl. J. Med. 363, 692–695 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Keech, A. C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 370, 1687–1697 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Chew, E. Y. et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363, 233–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Jun, M. et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 60, 2061–2071 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Canner, P. L. et al. Fifteen-year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    Article  CAS  PubMed  Google Scholar 

  115. Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. & Grace, K. A. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110, 3512–3517 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Taylor, A. J. et al. Extended-release niacin or ezetimibe and carotid intima–media thickness. N. Engl. J. Med. 361, 2113–2122 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25,673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 34, 1279–1291 (2013).

  120. Guyton, J. R. et al. Relationship of lipoproteins to cardiovascular events in the atherothrombosis intervention in metabolic syndrome with low hdl/high triglycerides and impact on global health outcomes (AIM-HIGH) trial. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2013.07.023.

  121. Carlson, L. A. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 258, 94–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Saravanan, P., Davidson, N. C., Schmidt, E. B. & Calder, P. C. Cardiovascular effects of marine omega-3 fatty acids. Lancet 376, 540–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Bosch J. et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 367, 309–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Roncaglioni, M. C. et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N. Engl. J. Med. 368, 1800–1808 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354, 447–455 (1999).

  126. Davidson, M. H. et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin. Ther. 29, 1354–1367 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Ballantyne, C. M. et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am. J. Cardiol. 110, 984–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Rader, D. J. et al. Apolipoprotein C-III is significantly reduced by prescription omega-3 free fatty acids (Epanova) in patients with severe hypertriglyceridemia and changes correlate with increases in LDL-C: a sub-analysis of the EVOLVE trial (abstract). Circulation 126, A19030 (2012).

    Google Scholar 

  129. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  130. Yokoyama, M. et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369, 1090–1098 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Brasky, T. M. et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl Cancer Inst. http://dx.doi.org/10.1093/jnci/djt174.

  132. Pandor, A. et al. Ezetimibe monotherapy for cholesterol lowering in 2,722 people: systematic review and meta-analysis of randomized controlled trials. J. Intern. Med. 265, 568–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Kikuchi, K. et al. Double-blind randomized clinical trial of the effects of ezetimibe on postprandial hyperlipidaemia and hyperglycaemia. J. Atheroscler. Thromb. 19, 1093–1101 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Nakamura, T. et al. A comparison of the efficacy of combined ezetimibe and statin therapy with doubling of statin dose in patients with remnant lipoproteinemia on previous statin therapy. J. Cardiol. 60, 12–17 (2012).

    Article  PubMed  Google Scholar 

  135. Chan, D. C., Watts, G. F., Gan, S. K., Ooi, E. M. & Barrett, P. H. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care 33, 1134–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tremblay, A. J., Lamarche, B., Hogue, J. C. & Couture, P. Effects of ezetimibe and simvastatin on apolipoprotein B metabolism in males with mixed hyperlipidemia. J. Lipid Res. 50, 1463–1471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goldberg, R. B. et al. Ezetimibe/simvastatin vs atorvastatin in patients with type 2 diabetes mellitus and hypercholesterolemia: the VYTAL study. Mayo Clin. Proc. 81, 1579–1588 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Rossebø, A. et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359, 1343–1356 (2008).

    Article  PubMed  Google Scholar 

  139. Fleg, J. et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J. Am. Coll. Cardiol. 52, 2198–2205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kastelein, J. J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Peto, R. et al. Analyses of cancer data from three ezetimibe trials. N. Engl. J. Med. 359, 1357–1366 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Califf, R. M. et al. An update on the IMProved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) design. Am. Heart J. 159, 705–709 (2010).

    Article  PubMed  Google Scholar 

  144. Kim, W. & Egan, J. M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470–512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Watts, G. F. & Chan, D. C. Novel insights into the regulation of postprandial lipemia by glucagon-like peptides: significance for diabetes. Diabetes 62, 336–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cobble, M. E. & Frederich, R. Saxagliptin for the treatment of type 2 diabetes mellitus: assessing cardiovascular data. Cardiovasc. Diabetol. 11, 6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gaudet, D. et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 20, 361–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Wierzbicki A. S. & Viljoen, A. Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency. Expert Opin. Biol. Ther. 13, 7–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Gaudet, D. et al. Medical resource use and costs associated with chylomicronemia. J. Med. Econ. 16, 657–666 (2013).

    Article  PubMed  Google Scholar 

  150. Cariou, B. et al. Dual peroxisome proliferator–activated receptor α/{delta} agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care http://dx.doi.org/10.2337/dc12-2012.

  151. Cariou, B., Zaïr, Y., Staels, B. & Bruckert, E. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 34, 2008–2014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Staels, B. et al. Hepato-protective effects of the dual PPARα/δ agonist GFT505 in rodent models of NAFLD/NASH. Hepatology http://dx.doi.org/10.1002/hep.26461.

  153. Henry, R. R. et al. Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 374, 126–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Roche. Media Release: Roche halts investigation of aleglitazar following regular safety review of phase III trial [online], (2013).

  155. Barter, P. J. & Rye, K. A. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J. Lipid Res. 53, 1755–1766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Meyers, C. et al. The DGAT1 inhibitor LCQ908 decreases triglyceride levels in patients with the familial chylomicronemia syndrome. J. Clin. Lipidol. 6, 266–267 (2012).

    Article  Google Scholar 

  159. Denison, H. et al. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes. Metab. 15, 136–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Graham, M. J. et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ. Res. 112, 1479–1490 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Lee, R. G. et al. Antisense suppression of serum ApoC-III improves hypertriglyceridemia and insulin sensitivity in multiple species (abstract 51-LB). Presented at the American Diabetes Association 73rd Scientific Sessions (2013).

  164. Lambert, G., Sjouke, B., Choque, B., Kastelein, J. J. & Hovingh, G. K. The PCSK9 decade. J. Lipid Res. 53, 2515–2524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee, E. C. et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J. Biol. Chem. 284, 13735–13745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brunzell, J. D. et al. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care 31, 811–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Rubiés-Prat, J. et al. Calculated low-density lipoprotein cholesterol should not be used for management of lipoprotein abnormalities in patients with diabetes mellitus. Diabetes Care 16, 1081–1086 (1993).

    Article  PubMed  Google Scholar 

  168. Wierzbicki, A. S. The fats of life in diabetes. Br. J. Diabetes Vasc. Dis. 12, 216–220 (2012).

    Article  Google Scholar 

  169. Sniderman, A. D. Differential response of cholesterol and particle measures of atherogenic lipoproteins to LDL-lowering therapy: implications for clinical practice. J. Clin. Lipidol. 2, 36–42 (2008).

    Article  PubMed  Google Scholar 

  170. Hunninghake, D. B. et al. Rosuvastatin improves the atherogenic and atheroprotective lipid profiles in patients with hypertriglyceridemia. Coron. Artery Dis. 15, 115–123 (2004).

    Article  PubMed  Google Scholar 

  171. Jacobson, T. A. 'Trig-onometry': non-high-density lipoprotein cholesterol as a therapeutic target in dyslipidaemia. Int. J. Clin. Pract. 65, 82–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Fonseca, V., Handelsman, Y. & Staels, B. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes. Metab. 12, 384–392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bays, H. E. et al. Long-term safety and efficacy of fenofibric acid in combination with statin therapy for the treatment of patients with mixed dyslipidemia. J. Clin. Lipidol. 2, 426–435 (2008).

    Article  PubMed  Google Scholar 

  174. Davidson, M. H., Armani, A., McKenney, J. M. & Jacobson, T. A. Safety considerations with fibrate therapy. Am. J. Cardiol. 99, 3C–18C (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Costet, P. et al. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 212, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Matteucci, E. & Giampietro, O. Statin intolerance: why and what to do—with a focus on diabetic people. Curr. Med. Chem. 20, 1397–1408 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Bays, H. E. et al. Icosapent ethyl, a pure EPA omega-3 fatty acid: effects on lipoprotein particle concentration and size in patients with very high triglyceride levels (the MARINE study). J. Clin. Lipidol. 6, 565–572 (2012).

    Article  PubMed  Google Scholar 

  178. Rubenfire, M., Brook, R. D. & Rosenson, R. S. Treating mixed hyperlipidemia and the atherogenic lipid phenotype for prevention of cardiovascular events. Am. J. Med. 123, 892–898 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Bonds, D. E. et al. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) experience. Diabetologia 55, 1641–1650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Guyton, J. R. & Bays, H. E. Safety considerations with niacin therapy. Am. J. Cardiol. 99, 22C–31C (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E. M. M. Ooi is an NHMRC Postdoctoral Fellow. D. C. Chan is a National Health and Medical Research Council (NHMRC) Career Development Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to the discussion of content, wrote the manuscript, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Gerald F. Watts.

Ethics declarations

Competing interests

G. F. Watts has received honoraria for advisory board memberships and lectures from Abbott, Amgen, Genfit, Merck & Co., and Sanofi. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, G., Ooi, E. & Chan, D. Demystifying the management of hypertriglyceridaemia. Nat Rev Cardiol 10, 648–661 (2013). https://doi.org/10.1038/nrcardio.2013.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing