Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Update on atrial fibrillation catheter ablation technologies and techniques

Abstract

Catheter ablation of atrial fibrillation (AF) has become an important treatment method. Electrical isolation of the pulmonary veins is the cornerstone of most AF ablation procedures, and is defined by an entrance block observed on a circular multipolar electrode catheter. The safety and efficacy of AF ablation is best established in middle-aged patients with paroxysmal AF. Current guidelines recommend AF ablation with a level Ia indication in this group of patients. The long-term efficacy of AF ablation is well established in patients with paroxysmal AF, but less so in patients with longstanding persistent AF. In this population, current guidelines recommend AF ablation with a level IIb indication. The efficacy of catheter ablation in other patient populations, particularly elderly people and those with concomitant conditions, is also poorly defined. AF ablation is reasonably effective and safe at 12 months of follow-up, but recurrence of AF ≥1 year after ablation is not uncommon. Fortunately, the techniques and tools used for AF ablation continue to evolve. These developments include novel ablation catheters designed to increase safety, efficacy, and precision of the procedure, ablation strategies to target both pulmonary vein and nonpulmonary vein AF triggers, and improved imaging and electrical mapping to guide ablation procedures.

Key Points

  • Atrial fibrillation (AF) is commonly treated with catheter ablation, which aims to electrically isolate the pulmonary veins

  • Irrigated radiofrequency and cryoballon ablation catheters are the two most-commonly used tools for AF ablation

  • Robotic systems and novel catheters could improve safety and decrease the procedure duration

  • MRI-guided systems are being developed that might help define the optimal lesion ablation set in a given patient, or for real-time imaging during catheter ablation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiofrequency ablation of atrial fibrillation.
Figure 2: Right and left anterior oblique projections of selected pulmonary vein angiograms.
Figure 3: Branching pattern of PV anatomy in patients with AF and control individuals.
Figure 4: A schematic of occlusion of the pulmonary vein with the Arctic Front® cardiac cryoablation catheter system (Medtronic Inc., Minneapolis, MN, USA).
Figure 5: HeartLight® (CardioFocus Inc., Marlborough, MA, USA) balloon showing perpendicular projection of 30° therapeutic beam of light.
Figure 6: The pulmonary vein ablation catheter (PVAC) (Medtronic Inc., Minneapolis, MN, USA) is a multielectrode ablation catheter that can be used to map, ablate, and verify isolation of pulmonary veins during an ablation procedure.
Figure 7: Stability of complex fractionated atrial electrograms.
Figure 8: Co-registered scar and voltage electro-anatomic map of the left atrium.

Similar content being viewed by others

References

  1. McManus, D. D., Rienstra, M. & Benjamin, E. J. An update on the prognosis of patients with atrial fibrillation. Circulation 126, e143–e146 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Calkins, H. et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: Recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Heart Rhythm 9, 632–696 (2012).

    PubMed  Google Scholar 

  3. Chen, Y. et al. Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: implication in initiation of atrial fibrillation. Circulation 104, 2849–2854 (2001).

    CAS  PubMed  Google Scholar 

  4. Arora, R. et al. Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 107, 1816–1821 (2003).

    PubMed  PubMed Central  Google Scholar 

  5. Kumagai, K. et al. Electrophysiologic properties of pulmonary veins assessed using a multielectrode basket catheter. J. Am. Coll. Cardiol. 43, 2281–2289 (2004).

    PubMed  Google Scholar 

  6. Lin, Y. et al. Frequency analysis in different types of paroxysmal atrial fibrillation. J. Am. Coll. Cardiol. 47, 1401–1407 (2006).

    PubMed  Google Scholar 

  7. Kalifa, J. et al. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 113, 626–633 (2006).

    PubMed  Google Scholar 

  8. Lin, Y. et al. Spatiotemporal organization of the left atrial substrate after circumferential pulmonary vein isolation of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2, 233–241 (2009).

    PubMed  Google Scholar 

  9. Zlochiver, S., Yamazaki, M., Kalifa, J. & Berenfeld, O. Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm 5, 846–854 (2008).

    PubMed  PubMed Central  Google Scholar 

  10. Cox, J. L., Jaquiss, R. D. B., Schuessler, R. B. & Boineau, J. P. Modification of the maze procedure for atrial flutter and atrial fibrillation. J. Thorac. Cardiovasc. Surg. 110, 485–495 (1995).

    CAS  PubMed  Google Scholar 

  11. Swartz, J., Pellerseis, G., Silvers, J., Patten, L. & Cervantez, D. A catheter based curative approach to atrial fibrillation in humans [abstract]. Circulation 90 (Suppl. I), 335 (1994).

    Google Scholar 

  12. Haissaguerre, M. et al. Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 7, 1132–1144 (1996).

    CAS  PubMed  Google Scholar 

  13. Gaita, F. et al. Atrial mapping and radiofrequency catheter ablation in patients with idiopathic atrial fibrillation. Electrophysiological findings and ablation results. Circulation 97, 2136–2145 (1998).

    CAS  PubMed  Google Scholar 

  14. Jais, P. et al. Long-term follow-up after right atrial radiofrequency catheter treatment of paroxysmal atrial fibrillation. Pacing Clin. Electrophysiol. 11, 2533–2538 (1998).

    Google Scholar 

  15. Pappone, C. et al. Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation 100, 1203–1208 (1999).

    CAS  PubMed  Google Scholar 

  16. Calkins, H. Has the time come to abandon the concept that “Pulmonary vein isolation is the cornerstone of atrial fibrillation ablation”? Circ. Arrhythm. Electrophysiol. 6, 241–242 (2013).

    PubMed  Google Scholar 

  17. Di Biase, L. et al. General anesthesia reduces the prevalence of pulmonary vein reconnection during repeat ablation when compared with conscious sedation: Results from a randomized study. Heart Rhythm 8, 368–372 (2011).

    PubMed  Google Scholar 

  18. Malcolme-Lawes, L. C. et al. Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation. Europace 15, 41–47 (2013).

    PubMed  Google Scholar 

  19. Yamane, T. et al. Repeated provocation of time- and ATP-induced early pulmonary vein reconnections after pulmonary vein isolation: eliminating paroxysmal atrial fibrillation in a single procedure. Circ. Arrhythm. Electrophysiol. 4, 601–608 (2011).

    PubMed  Google Scholar 

  20. Arentz, T. et al. “Dormant” pulmonary vein conduction revealed by adenosine after ostial radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 15, 1041–1047 (2004).

    PubMed  Google Scholar 

  21. Steven, D. et al. Loss of pace capture on the ablation line: a new marker for complete radiofrequency lesions to achieve pulmonary vein isolation. Heart Rhythm 7, 323–330 (2010).

    PubMed  Google Scholar 

  22. Hachiya, H. et al. Clinical implications of reconnection between the left atrium and isolated pulmonary veins provoked by adenosine triphosphate after extensive encircling pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 18, 392–398 (2007).

    PubMed  Google Scholar 

  23. Jiang, C. et al. Early detection of pulmonary vein reconnection after isolation in patients with paroxysmal atrial fibrillation: A comparison of ATP-induction and reassessment at 30 minutes postisolation. J. Cardiovasc. Electrophysiol. 20, 1382–1387 (2009).

    PubMed  Google Scholar 

  24. Hutchinson, M. D. et al. Efforts to enhance catheter stability improve atrial fibrillation ablation outcome. Heart Rhythm 10, 347–353 (2013).

    PubMed  Google Scholar 

  25. Reddy, V. Y. et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm 9, 1789–1795 (2012).

    PubMed  Google Scholar 

  26. Corrado, A. et al. Impact of systematic isolation of superior vena cava in addition to pulmonary vein antrum isolation on the outcome of paroxysmal, persistent, and permanent atrial fibrillation ablation: results from a randomized study. J. Cardiovasc. Electrophysiol. 21, 1–5 (2010).

    PubMed  Google Scholar 

  27. Lin, D. et al. Pulmonary vein antral isolation and nonpulmonary vein trigger ablation without additional substrate modification for treating longstanding persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 23, 806–813 (2012).

    PubMed  Google Scholar 

  28. Di Biase, L. et al. Left atrial appendage: an underrecognized trigger site of atrial fibrillation. Circulation 122, 109–118 (2010).

    PubMed  Google Scholar 

  29. Fürnkranz, A. et al. Improved procedural efficacy of pulmonary vein isolation using the novel second-generation cryoballoon. J. Cardiovasc. Electrophysiol. 24, 492–497 (2013).

    PubMed  Google Scholar 

  30. Calkins, H. et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up: a report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 4, 816–861 (2007).

    PubMed  Google Scholar 

  31. Miller, M. A. et al. Acute electrical isolation is a necessary but insufficient endpoint for achieving durable PV isolation: the importance of closing the visual gap. Europace 14, 653–660 (2012).

    PubMed  Google Scholar 

  32. Arentz, T. et al. Small or large isolation areas around the pulmonary veins for the treatment of atrial fibrillation? Results from a prospective randomized study. Circulation 115, 3057–3063 (2007).

    PubMed  Google Scholar 

  33. Pappone, C. et al. A randomized trial of circumferential pulmonary vein ablation versus antiarrhythmic drug therapy in paroxysmal atrial fibrillation: the APAF study. J. Am. Coll. Cardiol. 48, 2340–2347 (2006).

    CAS  PubMed  Google Scholar 

  34. Wazni, O. M. et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA 293, 2634–2640 (2005).

    CAS  PubMed  Google Scholar 

  35. Jaïs, P. et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation 118, 2498–2505 (2008).

    PubMed  Google Scholar 

  36. Wilber, D. J. et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA 303, 333–340 (2010).

    CAS  PubMed  Google Scholar 

  37. Cappato, R. et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 32–38 (2010).

    PubMed  Google Scholar 

  38. Calkins, H. et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ. Arrhythm. Electrophysiol. 2, 349–361 (2009).

    CAS  PubMed  Google Scholar 

  39. Zado, E. et al. Long-term clinical efficacy and risk of catheter ablation for atrial fibrillation in the elderly. J. Cardiovasc. Electrophysiol. 19, 621–626 (2008).

    PubMed  Google Scholar 

  40. Sawhney, N., Anousheh, R., Chen, W. C., Narayan, S. & Feld, G. K. Five-year outcomes after segmental pulmonary vein isolation for paroxysmal atrial fibrillation. Am. J. Cardiol. 104, 366–372 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Wokhlu, A. et al. Long-term outcome of atrial fibrillation ablation: Impact and predictors of very late recurrence. J. Cardiovasc. Electrophysiol. 21, 1071–1078 (2010).

    PubMed  Google Scholar 

  42. Bertaglia, E. et al. Does catheter ablation cure atrial fibrillation? Single-procedure outcome of drug-refractory atrial fibrillation ablation: a 6-year multicentre experience. Europace 12, 181–187 (2010).

    PubMed  Google Scholar 

  43. Weerasooriya, R. et al. Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? J. Am. Coll. Cardiol. 57, 160–166 (2011).

    PubMed  Google Scholar 

  44. Ouyang, F. et al. Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up. Circulation 122, 2368–2377 (2010).

    PubMed  Google Scholar 

  45. Medi, C. et al. Pulmonary vein antral isolation for paroxysmal atrial fibrillation: results from long-term follow-up. J. Cardiovasc. Electrophysiol. 22, 137–141 (2011).

    CAS  PubMed  Google Scholar 

  46. Cappato, R. et al. Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation 111, 1100–1105 (2005).

    PubMed  Google Scholar 

  47. Cappato, R. et al. Prevalence and causes of fatal outcome in catheter ablation of atrial fibrillation. J. Am. Coll. Cardiol. 53, 1798–1803 (2009).

    PubMed  Google Scholar 

  48. Lee, G. et al. Low risk of major complications associated with pulmonary vein antral isolation for atrial fibrillation: results of 500 consecutive ablation procedures in patients with low prevalence of structural heart disease from a single center. J. Cardiovasc. Electrophysiol. 22, 163–168 (2011).

    PubMed  Google Scholar 

  49. Hoyt, H. et al. Complications arising from catheter ablation of atrial fibrillation: temporal trends and predictors. Heart Rhythm 8, 1869–1874 (2011).

    PubMed  Google Scholar 

  50. Leong-Sit, P. et al. Efficacy and risk of atrial fibrillation ablation before 45 years of age. Circ. Arrhythm. Electrophysiol. 3, 452–457 (2010).

    PubMed  Google Scholar 

  51. Aldhoon, B., Wichterle, D., Peichl, P., Cihák, R. & Kautzner, J. Complications of catheter ablation for atrial fibrillation in a high-volume centre with the use of intracardiac echocardiography. Europace 15, 24–32 (2013).

    PubMed  Google Scholar 

  52. Di Biase, L. et al. Periprocedural stroke and management of major bleeding complications in patients undergoing catheter ablation of atrial fibrillation: the impact of periprocedural therapeutic international normalized ratio. Circulation 121, 2550–2556 (2010).

    CAS  PubMed  Google Scholar 

  53. Bassiouny, M. et al. Use of dabigatran for peri-procedural anticoagulation in patients undergoing catheter ablation for atrial fibrillation. Circ. Arrhythm. Electrophysiol. 6, 460–466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cleland, J. G., Coletta, A. P., Buga, L., Ahmed, D. & Clark, A. L. Clinical trials update from the American College of Cardiology meeting 2010: DOSE, ASPIRE, CONNECT, STICH, STOP-AF, CABANA, RACE II, EVEREST II, ACCORD, and NAVIGATOR. Eur. J. Heart Fail. 12, 623–629 (2010).

    PubMed  Google Scholar 

  55. Reynolds, M. R., Walczak, J., White, S. A., Cohen, D. J. & Wilber, D. J. Improvements in symptoms and quality of life in patients with paroxysmal atrial fibrillation treated with radiofrequency catheter ablation versus antiarrhythmic drugs. Circ. Cardiovasc. Qual. Outcomes 3, 615–623 (2010).

    PubMed  Google Scholar 

  56. Cosedis Nielsen, J. et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N. Engl. J. Med. 367, 1587–1595 (2012).

    PubMed  Google Scholar 

  57. Parkash, R., Tang, A. S., Sapp, J. L. & Wells, G. Approach to the catheter ablation technique of paroxysmal and persistent atrial fibrillation: a meta-analysis of the randomized controlled trials. J. Cardiovasc. Electrophysiol. 22, 729–738 (2011).

    PubMed  Google Scholar 

  58. Hayward, R. M. et al. Pulmonary vein isolation with complex fractionated atrial electrogram ablation for paroxysmal and nonparoxysmal atrial fibrillation: a meta-analysis. Heart Rhythm 8, 994–1000 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Assasi, N. et al. Comparative effectiveness of catheter ablation strategies for rhythm control in patients with atrial fibrillation: a meta-analysis. J. Interv. Card. Electrophysiol. 35, 259–275 (2012).

    PubMed  Google Scholar 

  60. Haïssaguerre, M. et al. Catheter ablation of long-lasting persistent atrial fibrillation: Clinical outcome and mechanisms of subsequent arrhythmias. J. Cardiovasc. Electrophysiol. 16, 1138–1147 (2005).

    PubMed  Google Scholar 

  61. Rostock, T. et al. Long-term single- and multiple-procedure outcome and predictors of success after catheter ablation for persistent atrial fibrillation. Heart Rhythm 8, 1391–1397 (2011).

    PubMed  Google Scholar 

  62. Ammar, S. et al. Importance of sinus rhythm as endpoint of persistent atrial fibrillation ablation. J. Cardiovasc. Electrophysiol. 24, 388–395 (2013).

    PubMed  Google Scholar 

  63. Park, Y. M., Choi, J., Lim, H. E., Park, S. W. & Kim, Y. Is pursuit of termination of atrial fibrillation during catheter ablation of great value in patients with longstanding persistent atrial fibrillation? J. Cardiovasc. Electrophysiol. 23, 1051–1058 (2012).

    PubMed  Google Scholar 

  64. O'Neill, M. D. et al. Long-term follow-up of persistent atrial fibrillation ablation using termination as a procedural endpoint. Eur. Heart J. 30, 1105–1112 (2009).

    PubMed  Google Scholar 

  65. Lo, L. et al. The impact of left atrial size on long-term outcome of catheter ablation of chronic atrial fibrillation. J. Cardiovasc. Electrophysiol. 20, 1211–1216 (2009).

    PubMed  Google Scholar 

  66. Lo, L. et al. Predicting factors for atrial fibrillation acute termination during catheter ablation procedures: Implications for catheter ablation strategy and long-term outcome. Heart Rhythm 6, 311–318 (2009).

    PubMed  Google Scholar 

  67. Takahashi, Y. et al. Characterization of electrograms associated with termination of chronic atrial fibrillation by catheter ablation. J. Am. Coll. Cardiol. 51, 1003–1010 (2008).

    PubMed  Google Scholar 

  68. Brooks, A. G. et al. Outcomes of long-standing persistent atrial fibrillation ablation: a systematic review. Heart Rhythm 7, 835–846 (2010).

    PubMed  Google Scholar 

  69. Nademanee, K. et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. J. Am. Coll. Cardiol. 51, 843–849 (2008).

    PubMed  Google Scholar 

  70. Nademanee, K. et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43, 2044–2053 (2004).

    PubMed  Google Scholar 

  71. Haïssaguerre, M. et al. Catheter ablation of long-lasting persistent atrial fibrillation: critical structures for termination. J. Cardiovasc. Electrophysiol. 16, 1125–1137 (2005).

    PubMed  Google Scholar 

  72. Mun, H. et al. Does additional linear ablation after circumferential pulmonary vein isolation improve clinical outcome in patients with paroxysmal atrial fibrillation? Prospective randomised study. Heart 98, 480–484 (2012).

    PubMed  Google Scholar 

  73. Dixit, S. et al. Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study. Circ. Arrhythm. Electrophysiol. 5, 287–294 (2012).

    PubMed  Google Scholar 

  74. Mulder, A. A., Wijffels, M. C., Wever, E. F. & Boersma, L. V. Pulmonary vein isolation and left atrial complex-fractionated atrial electrograms ablation for persistent atrial fibrillation with phased radio frequency energy and multi-electrode catheters: efficacy and safety during 12 months follow-up. Europace 13, 1695–1702 (2011).

    PubMed  Google Scholar 

  75. Benjamin, E. et al. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham Heart Study. JAMA 271, 840–844 (1994).

    CAS  PubMed  Google Scholar 

  76. Santangeli, P. et al. Catheter ablation of atrial fibrillation in octogenarians: safety and outcomes. J. Cardiovasc. Electrophysiol. 23, 687–693 (2012).

    PubMed  Google Scholar 

  77. Piccini, J. P. et al. Outcomes of Medicare beneficiaries undergoing catheter ablation for atrial fibrillation. Circulation 126, 2200–2207 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Bunch, T. J. et al. Long-term clinical efficacy and risk of catheter ablation for atrial fibrillation in octogenarians. Pacing Clin. Electrophysiol. 33, 146–152 (2010).

    PubMed  Google Scholar 

  79. Haegeli, L. M. et al. Ablation of atrial fibrillation after the retirement age: considerations on safety and outcome. J. Interv. Card. Electrophysiol. 28, 193–197 (2010).

    PubMed  Google Scholar 

  80. Yokokawa, M. et al. The impact of age on the atrial substrate: Insights from patients with a low scar burden undergoing catheter ablation of persistent atrial fibrillation. J. Interv. Card. Electrophysiol. 34, 287–294 (2012).

    PubMed  Google Scholar 

  81. Hao, S. et al. Acute safety outcomes in younger and older patients with atrial fibrillation treated with catheter ablation. J. Interv. Card. Electrophysiol. 35, 173–182 (2012).

    PubMed  Google Scholar 

  82. Gami, A. S. et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 110, 364–367 (2004).

    PubMed  Google Scholar 

  83. Stevenson, I. H. et al. Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function. Eur. Heart J. 29, 1662–1669 (2008).

    PubMed  Google Scholar 

  84. Altmann, D. R. et al. Clinical impact of screening for sleep related breathing disorders in atrial fibrillation. Int. J. Cardiol. 154, 256–258 (2012).

    PubMed  Google Scholar 

  85. Tang, R. et al. Obstructive sleep apnoea risk profile and the risk of recurrence of atrial fibrillation after catheter ablation. Europace 11, 100–105 (2009).

    PubMed  Google Scholar 

  86. Matiello, M. et al. Low efficacy of atrial fibrillation ablation in severe obstructive sleep apnoea patients. Europace 12, 1084–1089 (2010).

    PubMed  Google Scholar 

  87. Chilukuri, K. et al. Predictive value of obstructive sleep apnoea assessed by the berlin questionnaire for outcomes after the catheter ablation of atrial fibrillation. Europace 11, 896–901 (2009).

    PubMed  Google Scholar 

  88. Hoyer, F. F. et al. High prevalence of obstructive sleep apnea in patients with resistant paroxysmal atrial fibrillation after pulmonary vein isolation. J. Interv. Card. Electrophysiol. 29, 37–41 (2010).

    PubMed  Google Scholar 

  89. Bitter, T. et al. Predictors of recurrence in patients undergoing cryoballoon ablation for treatment of atrial fibrillation: the independent role of sleep-disordered breathing. J. Cardiovasc. Electrophysiol. 23, 18–25 (2012).

    PubMed  Google Scholar 

  90. Patel, D. et al. Safety and efficacy of pulmonary vein antral isolation in patients with obstructive sleep apnea: the impact of continuous positive airway pressure. Circ. Arrhythm. Electrophysiol. 3, 445–451 (2010).

    PubMed  Google Scholar 

  91. Jongnarangsin, K. et al. Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 19, 668–672 (2008).

    PubMed  Google Scholar 

  92. Ng, C. Y. et al. Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. Am. J. Cardiol. 108, 47–51 (2011).

    PubMed  Google Scholar 

  93. Bitter, T. et al. Predictors of recurrence in patients undergoing cryoballoon ablation for treatment of atrial fibrillation: the independent role of sleep-disordered breathing. J. Cardiovasc. Electrophysiol. 23, 18–25 (2012).

    PubMed  Google Scholar 

  94. Chilukuri, K. et al. A prospective study evaluating the role of obesity and obstructive sleep apnea for outcomes after catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 21, 521–525 (2010).

    PubMed  Google Scholar 

  95. Metzner, A. et al. One-year clinical outcome after pulmonary vein isolation using the novel endoscopic ablation system in patients with paroxysmal atrial fibrillation. Heart Rhythm 8, 988–993 (2011).

    PubMed  Google Scholar 

  96. Metzner, A. et al. Acute and long-term clinical outcome after endoscopic pulmonary vein isolation: results from the first prospective, multicenter study. J. Cardiovasc. Electrophysiol. 24, 7–13 (2013).

    PubMed  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  98. Dukkipati, S. R. et al. The durability of pulmonary vein isolation using the visually guided laser balloon catheter: multicenter results of pulmonary vein remapping studies. Heart Rhythm 9, 919–925 (2012).

    PubMed  Google Scholar 

  99. Dukkipati, S. R. et al. Visual balloon-guided point-by-point ablation: reliable, reproducible, and persistent pulmonary vein isolation. Circ. Arrhythm. Electrophysiol. 3, 266–273 (2010).

    PubMed  Google Scholar 

  100. Schmidt, B. et al. Feasibility of circumferential pulmonary vein isolation using a novel endoscopic ablation system. Circ. Arrhythm. Electrophysiol. 3, 481–488 (2010).

    PubMed  Google Scholar 

  101. Schmidt, B. et al. Worldwide experience using the endoscopic ablation system for ablation of atrial fibrillation [abstract]. Heart Rhythm 9 (Suppl.), S475–S495 (2012).

    Google Scholar 

  102. Mulder, A. A., Wijffels, M. C., Wever, E. F. & Boersma, L. V. Freedom from paroxysmal atrial fibrillation after successful pulmonary vein isolation with pulmonary vein ablation catheter-phased radiofrequency energy: 2-year follow-up and predictors of failure. Europace 14, 818–825 (2012).

    PubMed  Google Scholar 

  103. Scharf, C. et al. European survey on efficacy and safety of duty-cycled radiofrequency ablation for atrial fibrillation. Europace 14, 1700–1707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Scharf, C. et al. Ablation of persistent atrial fibrillation using multielectrode catheters and duty-cycled radiofrequency energy. J. Am. Coll. Cardiol. 54, 1450–1456 (2009).

    PubMed  Google Scholar 

  105. Boersma, L. V., Wijffels, M. C., Oral, H., Wever, E. F. & Morady, F. Pulmonary vein isolation by duty-cycled bipolar and unipolar radiofrequency energy with a multielectrode ablation catheter. Heart Rhythm 5, 1635–1642 (2008).

    PubMed  Google Scholar 

  106. Nardi, S. et al. Ablation of paroxysmal and persistent atrial fibrillation with multielectrode phased radiofrequency duty-cycled catheters: long-term results from a large cohort of patients. J. Cardiovasc. Med. (Hagerstown) http://dx.doi.org/10.2459/JCM.0b013e328360931a.

  107. Gaita, F. et al. Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon. J. Cardiovasc. Electrophysiol. 22, 961–968 (2011).

    PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  109. Kang, J. H. et al. Prediction of long-term outcomes of catheter ablation of persistent atrial fibrillation by parameters of preablation DC cardioversion. J. Cardiovasc. Electrophysiol. 23, 1165–1170 (2012).

    PubMed  Google Scholar 

  110. Verma, A. et al. Substrate and trigger ablation for reduction of atrial fibrillation (STAR AF): a randomized, multicentre, international trial. Eur. Heart J. 31, 1344–1356 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Lee, G. et al. Relationship among complex signals, short cycle length activity, and dominant frequency in patients with long-lasting persistent AF: a high-density epicardial mapping study in humans. Heart Rhythm 8, 1714–1719 (2011).

    PubMed  Google Scholar 

  112. Saghy, L. et al. Is there a relationship between complex fractionated atrial electrograms recorded during atrial fibrillation and sinus rhythm fractionation? Heart Rhythm 9, 181–188 (2012).

    PubMed  Google Scholar 

  113. Jadidi, A. S. et al. Functional nature of electrogram fractionation demonstrated by left atrial high-density mapping. Circ. Arrhythm. Electrophysiol. 5, 32–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  114. Roberts-Thomson, K. C. et al. Fractionated atrial electrograms during sinus rhythm: relationship to age, voltage, and conduction velocity. Heart Rhythm 6, 587–591 (2009).

    PubMed  Google Scholar 

  115. Centurión, O. A. et al. Influence of advancing age on fractionated right atrial endocardial electrograms. Am. J. Cardiol. 96, 239–242 (2005).

    PubMed  Google Scholar 

  116. Singh, S. M. et al. The modified ablation guided by ibutilide use in chronic atrial fibrillation (MAGIC-AF) study: clinical background and study design. J. Cardiovasc. Electrophysiol. 23, 352–358 (2012).

    PubMed  Google Scholar 

  117. Singh, S. M. et al. Intraprocedural use of ibutilide to organize and guide ablation of complex fractionated electrograms: preliminary assessment of a modified stepwise approach to ablation of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 21, 608–616 (2010).

    PubMed  Google Scholar 

  118. Pappone, C. et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109, 327–334 (2004).

    PubMed  Google Scholar 

  119. Lemery, R., Birnie, D., Tang, A. S., Green, M. & Gollob, M. Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm 3, 387–396 (2006).

    PubMed  Google Scholar 

  120. Pokushalov, E. et al. Ganglionated plexi ablation directed by high-frequency stimulation and complex fractionated atrial electrograms for paroxysmal atrial fibrillation. Pacing Clin. Electrophysiol. 35, 776–784 (2012).

    PubMed  Google Scholar 

  121. Pokushalov, E. et al. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm 6, 1257–1264 (2009).

    PubMed  Google Scholar 

  122. Scanavacca, M. et al. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation 114, 876–885 (2006).

    PubMed  Google Scholar 

  123. Katritsis, D. et al. Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation. Am. J. Cardiol. 102, 330–334 (2008).

    PubMed  Google Scholar 

  124. Katritsis, D. G. et al. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm 8, 672–678 (2011).

    PubMed  Google Scholar 

  125. Po, S. S., Nakagawa, H. & Jackman, W. M. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 20, 1186–1189 (2009).

    PubMed  Google Scholar 

  126. Calò, L. et al. Catheter ablation of right atrial ganglionated plexi in patients with vagal paroxysmal atrial fibrillation. Circ. Arrhythm. Electrophysiol. 5, 22–31 (2012).

    PubMed  Google Scholar 

  127. Hou, Y. et al. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J. Am. Coll. Cardiol. 50, 61–68 (2007).

    PubMed  Google Scholar 

  128. Hou, Y. et al. Interactive atrial neural network: determining the connections between ganglionated plexi. Heart Rhythm 4, 56–63 (2007).

    PubMed  Google Scholar 

  129. Zhou, J. et al. Gradients of atrial refractoriness and inducibility of atrial fibrillation due to stimulation of ganglionated plexi. J. Cardiovasc. Electrophysiol. 18, 83–90 (2007).

    PubMed  Google Scholar 

  130. Lu, Z. et al. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins: evidence by ablation of ganglionated plexi. Cardiovasc. Res. 84, 245–252 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Pokushalov, E. et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J. Am. Coll. Cardiol. 60, 1163–1170 (2012).

    PubMed  Google Scholar 

  132. Sahadevan, J. et al. Epicardial mapping of chronic atrial fibrillation in patients: preliminary observations. Circulation 110, 3293–3299 (2004).

    PubMed  Google Scholar 

  133. Chou, C. et al. Epicardial ablation of rotors suppresses inducibility of acetylcholine-induced atrial fibrillation in left pulmonary vein–left atrium preparations in a beagle heart failure model. J. Am. Coll. Cardiol. 58, 158–166 (2011).

    PubMed  Google Scholar 

  134. Narayan, S. M., Krummen, D. E. & Rappel, W. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J. Cardiovasc. Electrophysiol. 23, 447–454 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Narayan, S. M. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J. Am. Coll. Cardiol. 60, 628–636 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. de Groot, N. M. et al. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation 122, 1674–1682 (2010).

    PubMed  Google Scholar 

  137. Cuculich, P. S. et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 122, 1364–1372 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. Vaquero, M., Calvo, D. & Jalife, J. Cardiac fibrillation: from ion channels to rotors in the human heart. Heart Rhythm 5, 872–879 (2008).

    PubMed  PubMed Central  Google Scholar 

  139. Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M. & Jalife, J. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 98, 1236–1248 (1998).

    CAS  PubMed  Google Scholar 

  140. Reichlin, T. & Michaud, G. F. Our approach to maximizing the durability of pulmonary vein isolation during a paroxysmal atrial fibrillation ablation procedure. J. Cardiovasc. Electrophysiol. 23, 1272–1276 (2012).

    PubMed  Google Scholar 

  141. Datino, T. et al. Mechanisms by which adenosine restores conduction in dormant canine pulmonary veins. Circulation 121, 963–972 (2010).

    CAS  PubMed  Google Scholar 

  142. Arujuna, A. et al. Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation: evidence from magnetic resonance imaging. Circ. Arrhythm. Electrophysiol. 5, 691–700 (2012).

    PubMed  Google Scholar 

  143. Kuck, K. et al. A novel radiofrequency ablation catheter using contact force sensing: Toccata study. Heart Rhythm 9, 18–23 (2012).

    PubMed  Google Scholar 

  144. Hills, M. Contact force sensing RF catheters for ablation. StopAfib.org [online], (2011).

    Google Scholar 

  145. Nakagawa, H. I. et al. Controlling lesion size and incidence of steam pop by controlling contact force and radiofrequency power in canine beating heart [abstract]. Circulation 122, A15777 (2010).

    Google Scholar 

  146. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  147. Neuzil, P. et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ. Arrhythm. Electrophysiol. 6, 327–333 (2013).

    PubMed  Google Scholar 

  148. Saliba, W. et al. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J. Am. Coll. Cardiol. 51, 2407–2411 (2008).

    PubMed  Google Scholar 

  149. Bai, R. et al. Worldwide experience with the robotic navigation system in catheter ablation of atrial fibrillation: methodology, efficacy and safety. J. Cardiovasc. Electrophysiol. 23, 820–826 (2012).

    PubMed  Google Scholar 

  150. Pappone, C. et al. Robotic magnetic navigation for atrial fibrillation ablation. J. Am. Coll. Cardiol. 47, 1390–1400 (2006).

    PubMed  Google Scholar 

  151. Miyazaki, S. et al. Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 585–589 (2010).

    PubMed  Google Scholar 

  152. Arya, A. et al. Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case–control study. Europace 13, 45–50 (2011).

    PubMed  Google Scholar 

  153. Bauernfeind, T. et al. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias. Europace 13, 1015–1021 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. Knight, N., Ayers, G. & Cohen, T. Robotic positioning of standard electrophysiology catheters: a novel approach to catheter robotics. J. Invasive Cardiol. 20, 250–253 (2008).

    PubMed  Google Scholar 

  155. Frumkin, W. et al. Novel robotic catheter system demonstrates short learning curve [abstract BAF13]. J. Cardiovasc. Electrophysiol. 23, 682–683 (2012).

    Google Scholar 

  156. Oakes, R. S. et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119, 1758–1767 (2009).

    PubMed  PubMed Central  Google Scholar 

  157. Malcolme-Lawes, L. C. et al. Automated analysis of atrial late gadolinium enhancement imaging correlates with endocardial voltage and clinical outcomes: a two-center study. Heart Rhythm 10, 1184–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Badger, T. J. et al. Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ. Arrhythm. Electrophysiol. 3, 249–259 (2010).

    PubMed  PubMed Central  Google Scholar 

  159. Spragg, D. D. et al. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: success and limitations. Heart Rhythm 9, 2003–2009 (2012).

    PubMed  Google Scholar 

  160. Lardo, A. C. et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102, 698–705 (2000).

    CAS  PubMed  Google Scholar 

  161. Nazarian, S. et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation 118, 223–229 (2008).

    PubMed  PubMed Central  Google Scholar 

  162. Nordbeck, P. et al. Feasibility of contrast-enhanced and nonenhanced MRI for intraprocedural and postprocedural lesion visualization in interventional electrophysiology: animal studies and early delineation of isthmus ablation lesions in patients with typical atrial flutter. Circ. Cardiovasc. Imaging 4, 282–294 (2011).

    PubMed  Google Scholar 

  163. Hoffmann, B. A. et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur. Heart J. 31, 450–456 (2010).

    PubMed  Google Scholar 

  164. Vergara, G. R. et al. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla. Heart Rhythm 8, 295–303 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

The Johns Hopkins Atrial Fibrillation Program is supported by the Dr Francis P. Chiaramonte Private Foundation, the Marvin Weiner Family Foundation, and the Louise or Norbert Grunwald Endowment. The authors thank Bernadette Barcelon for help in acquiring some of the images used in this Review.

Author information

Authors and Affiliations

Authors

Contributions

J. Dewire and H. Calkins researched data for the article, discussed the content, and reviewed and edited the manuscript. J. Dewire wrote the article.

Corresponding author

Correspondence to Hugh Calkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewire, J., Calkins, H. Update on atrial fibrillation catheter ablation technologies and techniques. Nat Rev Cardiol 10, 599–612 (2013). https://doi.org/10.1038/nrcardio.2013.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing