Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel biomarkers in chronic heart failure

Abstract

Understanding of chronic heart failure (HF) has progressed from a syndrome of disordered hemodynamics caused by alterations in the structure of the heart to one that involves intertwined molecular pathways in disarray. Accordingly, the assessment and treatment of patients with chronic HF has shifted from a focus on hemodynamics to modification of maladaptive molecular processes. Accumulating evidence shows that molecular biomarkers of disease could provide a unique window into the pathophysiology of chronic HF, potentially improving our ability to predict adverse outcomes, provide novel drug targets, and even help gauge therapeutic efficacy. The more 'traditional' biomarkers such as cardiac troponin, natriuretic peptides, and C-reactive protein have been studied in large cohorts of patients with chronic HF and have relatively established clinical applications. In this Review, we summarize the properties, clinical data, and potential applications of some emerging biomarkers that could uniquely indicate the level of biomechanical stretch, inflammation, ventricular remodeling, myocardial injury, and renal dysfunction that occurs in chronic HF. We will also discuss the potential role for these biomarkers within a multimarker-based strategy that could, in the future, lead to better care for these patients.

Key Points

  • Chronic heart failure is a major health problem that results from maladaptive signaling within intertwined molecular pathways

  • Several novel biomarkers have been identified that allow measurement of the multitude of molecular processes involved in the pathophysiology of chronic heart failure

  • The clinical use of biomarkers could result in improved diagnosis, risk assessment, and treatment of patients with chronic heart failure

  • Considerable interest exists in the use of a multimarker strategy for parallel evaluation of traditional and novel biomarkers in patients with chronic heart failure

  • The goal of a multimarker strategy would be to classify chronic heart failure on a molecular basis and tailor therapies accordingly

  • New therapies for chronic heart failure could emerge from the measurement of novel biomarkers in patients with this condition

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HF as a systemic illness.
Figure 2: Possible future strategies for biomarker-guided therapies in chronic HF.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).

    PubMed  Google Scholar 

  2. Katz, A. M. The “modern” view of heart failure: how did we get here? Circ. Heart Fail. 1, 63–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 358, 2148–2159 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Stevenson, L. W. & Perloff, J. K. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 261, 884–888 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Baughman, K. L. B-type natriuretic peptide—a window to the heart. N. Engl. J. Med. 347, 158–159 (2002).

    Article  PubMed  Google Scholar 

  6. Remes, J., Miettinen, H., Reunanen, A. & Pyörälä, K. Validity of clinical diagnosis of heart failure in primary health care. Eur. Heart J. 12, 315–321 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Felker, G. M., Hasselblad, V., Hernandez, A. F. & O'Connor, C. M. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am. Heart J. 158, 422–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. van Kimmenade, R. R. & Januzzi, J. L. Jr. Emerging biomarkers in heart failure. Clin. Chem. 58, 127–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Horwich, T. B., Patel, J., MacLellan, W. R. & Fonarow, G. C. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 108, 833–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Dunlay, S. M. et al. Prognostic value of biomarkers in heart failure: application of novel methods in the community. Circ. Heart Fail. 2, 393–400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jougasaki, M. & Burnett, J. C. Jr. Adrenomedullin: potential in physiology and pathophysiology. Life Sci. 66, 855–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Sata, M. et al. Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism. Hypertension 36, 83–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tsuruda, T. & Burnett, J. C. Jr. Adrenomedullin: an autocrine/paracrine factor for cardiorenal protection. Circ. Res. 90, 625–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. von Haehling, S. et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur. J. Heart Fail. 12, 484–491 (2010).

    Article  PubMed  Google Scholar 

  15. Jougasaki, M., Wei, C. M., McKinley, L. J. & Burnett, J. C. Jr. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 92, 286–289 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Nishikimi, T. et al. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol. 26, 1424–1431 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Pousset, F. et al. Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure. Eur. Heart J. 21, 1009–1014 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Richards, A. M. et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J. Am. Coll. Cardiol. 37, 1781–1787 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Meeran, K. et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 82, 95–100 (1997).

    CAS  PubMed  Google Scholar 

  20. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin. Chem. 51, 1823–1829 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Adlbrecht, C. et al. Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur. J. Heart Fail. 11, 361–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Neuhold, S. et al. Prognostic value of emerging neurohormones in chronic heart failure during optimization of heart failure-specific therapy. Clin. Chem. 56, 121–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Jougasaki, M., Grantham, J. A., Redfield, M. M. & Burnett, J. C. Jr. Regulation of cardiac adrenomedullin in heart failure. Peptides 22, 1841–1850 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Britsch, S. The neuregulin-I/ErbB signaling system in development and disease. Adv. Anat. Embryol. Cell Biol. 190, 1–65 (2007).

    Article  PubMed  Google Scholar 

  25. Lemmens, K., Doggen, K. & Keulenaer, G. W. Neuregulin-1 and its potential role in the control of cardiac function. Heart Fail. Monit. 5, 119–124 (2008).

    CAS  PubMed  Google Scholar 

  26. Ky, B. et al. Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure. Circulation 120, 310–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burden, S. & Yarden, Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18, 847–855 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Corfas, G., Roy, K. & Buxbaum, J. D. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci. 7, 575–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Guarneri, V. et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M. D. Anderson Cancer Center experience. J. Clin. Oncol. 24, 4107–4115 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, Z. & Zhou, M. Neuregulin signaling and heart failure. Curr. Heart Fail. Rep. 7, 42–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Sawyer, D. B. & Caggiano, A. Neuregulin-1β for the treatment of systolic heart failure. J. Mol. Cell Cardiol. 51, 501–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, X. et al. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J. Am. Coll. Cardiol. 48, 1438–1447 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Rohrbach, S., Niemann, B., Silber, R. E. & Holtz, J. Neuregulin receptors erbB2 and erbB4 in failing human myocardium—depressed expression and attenuated activation. Basic Res. Cardiol. 100, 240–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, R. et al. A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J. Am. Coll. Cardiol. 55, 1907–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Jabbour, A. et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favorable acute and chronic hemodynamic responses. Eur. J. Heart Fail. 13, 83–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Weinberg, E. O. et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106, 2961–2966 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weinberg, E. O. et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 107, 721–726 (2003).

    Article  PubMed  Google Scholar 

  39. Shimpo, M. et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 109, 2186–2190 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Iwahana, H. et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur. J. Biochem. 264, 397–406 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Sanada, S. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117, 1538–1549 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seki, K. et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ. Heart Fail. 2, 684–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Shah, R. V. & Januzzi, J. L. Jr. ST2: a novel remodeling biomarker in acute and chronic heart failure. Curr. Heart Fail. Rep. 7, 9–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ky, B. et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ. Heart Fail. 4, 180–187 (2011).

    Article  PubMed  Google Scholar 

  45. Taub, P. R., Gabbai-Saldate, P. & Maisel, A. Biomarkers of heart failure. Congest. Heart Fail. 16 (Suppl. 1), S19–S24 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Pascual-Figal, D. A. et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 54, 2174–2179 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bayes-Genis, A. et al. Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur. J. Heart Fail. 14, 32–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Adams, K. F., Jr, Felker, G. M., Fraij, G., Patterson, J. H. & O'Connor, C. M. Biomarker guided therapy for heart failure: focus on natriuretic peptides. Heart Fail. Rev. 15, 351–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Bayes-Genis, A. et al. Soluble ST2 monitoring provides additional risk stratification for outpatients with decompensated heart failure. Rev. Esp. Cardiol. 63, 1171–1178 (2010).

    Article  PubMed  Google Scholar 

  50. Boisot, S. et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J. Card. Fail. 14, 732–738 (2008).

    Article  PubMed  Google Scholar 

  51. Dieplinger, B. et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma—the Presage ST2 assay. Clin. Chim. Acta 409, 33–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Weir, R. A. et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 55, 243–250 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Kociol, R. D. et al. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 56, 1071–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Morrow, D. A. & Antman, E. M. Evaluation of high-sensitivity assays for cardiac troponin. Clin. Chem. 55, 5–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Saunders, J. T. et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 123, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Latini, R. et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116, 1242–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Tsutamoto, T. et al. Prognostic role of highly sensitive cardiac troponin I in patients with systolic heart failure. Am. Heart J. 159, 63–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Alehagen, U., Dahlström, U., Rehfeld, J. F. & Goetze, J. P. Prognostic assessment of elderly patients with symptoms of heart failure by combining high-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide measurements. Clin. Chem. 56, 1718–1724 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Tentzeris, I. et al. Complementary role of copeptin and high-sensitivity troponin in predicting outcome in patients with stable chronic heart failure. Eur. J. Heart Fail. 13, 726–733 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Felker, G. M. Biomarkers as surrogate end points in heart failure trials. Heart Fail. Clin. 7, 501–507 (2011).

    Article  PubMed  Google Scholar 

  61. de Boer, R. A., Voors, A. A., Muntendam, P., van Gilst, W. H. & van Veldhuisen, D. J. Galectin-3: a novel mediator of heart failure development and progression. Eur. J. Heart Fail. 11, 811–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Sharma, U. C. et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110, 3121–3128 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Reifenberg, K. et al. Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am. J. Pathol. 171, 463–472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Henderson, N. C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Henderson, N. C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl Acad. Sci. U. S. A. 103, 5060–5065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharma, U. et al. Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am. J. Physiol. Heart Circ. Physiol. 294, H1226–H1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Y. H. et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am. J. Physiol. Heart Circ. Physiol. 296, H404–H412 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Lin, Y. H. et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin. Chim. Acta 409, 96–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Tang, W. H. et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am. J. Cardiol. 108, 385–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de Boer, R. A. et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann. Med. 43, 60–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Lok, D. J. et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin. Res. Cardiol. 99, 323–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R. & Januzzi, J. L. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 12, 826–832 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ueland, T. et al. Galectin-3 in heart failure: high levels are associated with all-cause mortality. Int. J. Cardiol. 150, 361–364 (2011).

    Article  PubMed  Google Scholar 

  74. Felker, G. M. et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION Study. Circ. Heart Fail. 5, 72–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Bootcov, M. R. et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl Acad. Sci. U. S. A. 94, 11514–11519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anand, I. S. et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation 122, 1387–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Frank, D. et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51, 309–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Kempf, T. et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 98, 351–360 (2006).

    CAS  PubMed  Google Scholar 

  79. Heger, J. et al. Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes. J. Cell Physiol. 224, 120–126 (2010).

    CAS  PubMed  Google Scholar 

  80. Kempf, T. et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 17, 581–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Bermudez, B. et al. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc. Res. 79, 294–303 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Wallin, U. et al. Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer. Br. J. Cancer 104, 1619–1627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kempf, T. et al. Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease: results from the AtheroGene study. Circ. Cardiovasc. Genet. 2, 286–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Eitel, I. et al. Growth-differentiation factor 15 as predictor of mortality in acute reperfused ST-elevation myocardial infarction: insights from cardiovascular magnetic resonance. Heart 97, 632–640 (2011).

    Article  PubMed  Google Scholar 

  85. Hochholzer, W., Morrow, D. A. & Giugliano, R. P. Novel biomarkers in cardiovascular disease: update 2010. Am. Heart J. 160, 583–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Eggers, K. M. et al. Growth-differentiation factor-15 for long-term risk prediction in patients stabilized after an episode of non-ST-segment-elevation acute coronary syndrome. Circ. Cardiovasc. Genet. 3, 88–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Kempf, T. et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J. Am. Coll. Cardiol. 50, 1054–1060 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Foley, P. W. et al. Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. Eur. Heart J. 30, 2749–2757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Masson, S. et al. The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: data from the GISSI-heart failure (GISSI-HF) trial. Eur. J. Heart Fail. 12, 338–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Tsutamoto, T. et al. Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am. J. Cardiol. 76, 803–808 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Van Beneden, R. et al. Superiority of big endothelin-1 and endothelin-1 over natriuretic peptides in predicting survival in severe congestive heart failure: a 7-year follow-up study. J. Card. Fail. 10, 490–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Pousset, F. et al. Prognostic value of plasma endothelin-1 in patients with chronic heart failure. Eur. Heart J. 18, 254–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Hülsmann, M. et al. Value of cardiopulmonary exercise testing and big endothelin plasma levels to predict short-term prognosis of patients with chronic heart failure. J. Am. Coll. Cardiol. 32, 1695–700 (1998).

    Article  PubMed  Google Scholar 

  94. Tsutamoto, T. et al. Plasma brain natriuretic peptide level as a biochemical marker of morbidity and mortality in patients with asymptomatic or minimally symptomatic left ventricular dysfunction. Comparison with plasma angiotensin II and endothelin-1. Eur. Heart J. 20, 1799–1807 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Gardner, R. S., Chong, V., Morton, I. & McDonagh, T. A. N-terminal brain natriuretic peptide is a more powerful predictor of mortality than endothelin-1, adrenomedullin and tumor necrosis factor-alpha in patients referred for consideration of cardiac transplantation. Eur. J. Heart Fail. 7, 253–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Jankowska, E. A. et al. Identification of chronic heart failure patients with a high 12-month mortality risk using biomarkers including plasma C-terminal pro-endothelin-1. PLoS ONE 6, e14506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Papassotiriou, J., Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Immunoluminometric assay for measurement of the C-terminal endothelin-1 precursor fragment in human plasma. Clin. Chem. 52, 1144–1151 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Kalra, P. R., Moon, J. C. & Coats, A. J. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int. J. Cardiol. 85, 195–197 (2002).

    Article  PubMed  Google Scholar 

  99. Chatterjee, K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am. J. Cardiol. 95, 8B–13B (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Goldsmith, S. R. & Gheorghiade, M. Vasopressin antagonism in heart failure. J. Am. Coll. Cardiol. 46, 1785–1791 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, D. L. et al. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J. Clin. Invest. 99, 1500–1505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goldsmith, S. R., Francis, G. S., Cowley, A. W., Jr, Goldenberg, I. F. & Cohn, J. N. Hemodynamic effects of infused arginine vasopressin in congestive heart failure. J. Am. Coll. Cardiol. 8, 779–783 (1986).

    Article  CAS  PubMed  Google Scholar 

  103. Nakamura, T. et al. Possible vascular role of increased plasma arginine vasopressin in congestive heart failure. Int. J. Cardiol. 106, 191–195 (2006).

    Article  PubMed  Google Scholar 

  104. Neuhold, S. et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J. Am. Coll. Cardiol. 52, 266–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Fan, Y. H. et al. Arginine vasopressin increases iNOS-NO system activity in cardiac fibroblasts through NF-kappaB activation and its relation with myocardial fibrosis. Life Sci. 81, 327–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Gheorghiade, M. et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA 297, 1332–1343 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297, 1319–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Udelson, J. E. et al. Acute hemodynamic effects of conivaptan, a dual V(1A) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 104, 2417–2423 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Struck, J., Morgenthaler, N. G. & Bergmann, A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides 26, 2500–2504 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Katan, M. & Christ-Crain, M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med Wkly 140, w13101 (2010).

    CAS  PubMed  Google Scholar 

  111. Khan, S. Q. et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 115, 2103–2110 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Voors, A. A. et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur. Heart J. 30, 1187–1194 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Stoiser, B. et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Invest. 36, 771–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Alehagen, U., Dahlström, U., Rehfeld, J. F. & Goetze, J. P. Association of copeptin and N-terminal proBNP concentrations with risk of cardiovascular death in older patients with symptoms of heart failure. JAMA 305, 2088–2095 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Keevil, B. G., Kilpatrick, E. S., Nichols, S. P. & Maylor, P. W. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin. Chem. 44, 1535–1539 (1998).

    CAS  PubMed  Google Scholar 

  116. Ix, J. H., Shlipak, M. G., Chertow, G. M. & Whooley, M. A. Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study. Circulation 115, 173–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Tang, W. H. et al. Impact of myocardial function on cystatin C measurements in chronic systolic heart failure. J. Card. Fail. 14, 394–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Arimoto, T. et al. Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J. Card. Fail. 11, 595–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Shlipak, M. G. et al. Cystatin-C and mortality in elderly persons with heart failure. J. Am. Coll. Cardiol. 45, 268–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Alehagen, U., Dahlström, U. & Lindahl, T. L. Cystatin C and NT-proBNP, a powerful combination of biomarkers for predicting cardiovascular mortality in elderly patients with heart failure: results from a 10-year study in primary care. Eur. J. Heart Fail. 11, 354–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Lassus, J. & Harjola, V. P. Cystatin C: a step forward in assessing kidney function and cardiovascular risk. Heart Fail. Rev. http://dx.doi.org/10.1007/s10741-011-9242–6.

  122. Cowland, J. B. & Borregaard, N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45, 17–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Schmidt-Ott, K. M. et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr. Opin. Nephrol. Hypertens. 15, 442–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Haase-Fielitz, A. et al. Novel and conventional serum iomarkers predicting acute kidney injury in adult cardiac surgery—a prospective cohort study. Crit. Care Med. 37, 553–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Bolignano, D., Coppolino, G., Lacquaniti, A. & Buemi, M. From kidney to cardiovascular diseases: NGAL as a biomarker beyond the confines of nephrology. Eur. J. Clin. Invest. 40, 273–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Yndestad, A. et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur. Heart J. 30, 1229–1236 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Damman, K., Voors, A. A., Navis, G., van Veldhuisen, D. J. & Hillege, H. L. Current and novel renal biomarkers in heart failure. Heart Fail. Rev. http://dx.doi.org/10.1007/s10741-011-9, 254–2.

  128. Damman, K. et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur. Heart J. 32, 2705–2712 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Comnick, M. & Ishani, A. Renal biomarkers of kidney injury in cardiorenal syndrome. Curr. Heart Fail. Rep. 8, 99–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Damman, K. et al. Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J. Am. Coll. Cardiol. 57, 2233–2241 (2011).

    Article  PubMed  Google Scholar 

  131. Mishra, J. et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 15, 3073–3082 (2004).

    Article  PubMed  Google Scholar 

  132. Giannessi, D. Multimarker approach for heart failure management: perspectives and limitations. Pharmacol. Res. 64, 11–24 (2011).

    Article  PubMed  Google Scholar 

  133. Allen, L. A. Use of multiple biomarkers in heart failure. Curr. Cardiol. Rep. 12, 230–236 (2010).

    Article  PubMed  Google Scholar 

  134. Hlatky, M. A. et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119, 2408–2416 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cook, N. R. Assessing the incremental role of novel and emerging risk factors. Curr. Cardiovasc. Risk Rep. 4, 112–119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cook, N. R. & Ridker, P. M. Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann. Intern. Med. 150, 795–802 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. McGeechan, K., Macaskill, P., Irwig, L., Liew, G. & Wong, T. Y. Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide. Arch. Intern. Med. 168, 2304–2310 (2008).

    Article  PubMed  Google Scholar 

  138. Dewey, F. E., Wheeler, M. T. & Ashley, E. A. Systems biology of heart failure, challenges and hopes. Curr. Opin. Cardiol. 26, 314–321 (2011).

    Article  PubMed  Google Scholar 

  139. Atienza, F., Martinez-Alzamora, N., De Velasco, J. A., Dreiseitl, S. & Ohno-Machado, L. Risk stratification in heart failure using artificial neural networks. Proc. AMIA Symp. 2000, 32–36 (2000).

    Google Scholar 

  140. Levy, W. C. et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113, 1424–1433 (2006).

    Article  PubMed  Google Scholar 

  141. Troughton, R. W., Frampton, C. M. & Nicholls, M. G. Biomarker-guided treatment of heart failure: still waiting for a definitive answer. J. Am. Coll. Cardiol. 56, 2101–2104 (2010).

    Article  PubMed  Google Scholar 

  142. Bhardwaj, A. et al. Design and methods of the Pro-B Type Natriuretic Peptide Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) Study. Am. Heart J. 159, 532.e1–538.e1 (2010).

    Article  CAS  Google Scholar 

  143. Lainchbury, J. G. et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J. Am. Coll. Cardiol. 55, 53–60 (2009).

    Article  PubMed  CAS  Google Scholar 

  144. Eurlings, L. W. et al. Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J. Am. Coll. Cardiol. 56, 2090–2100 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Miller, W. L. et al. Serial biomarker measurements in ambulatory patients with chronic heart failure: the importance of change over time. Circulation 116, 249–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Miller, W. L. et al. Serial measurements of midregion proANP and copeptin in ambulatory patients with heart failure: incremental prognostic value of novel biomarkers in heart failure. Heart 98, 389–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Morrow, D. A. & Cook, N. R. Determining decision limits for new biomarkers: clinical and statistical considerations. Clin. Chem. 57, 1–3 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Linda K. Shaw (Senior Statistician, Duke Clinical Research Institute, Durham, NC, USA) for her valuable feedback on the discussion about statistical methods.

Author information

Authors and Affiliations

Authors

Contributions

T. Ahmad researched the data for the article. All the authors contributed equally to discussions of the content and to writing the article. M. Fiuzat, G. M. Felker and C. O'Connor reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tariq Ahmad.

Ethics declarations

Competing interests

M. Fiuzat, G. M. Felker and C. O'Connor have received research support from BG Medicine, Critical Diagnostics, and Roche. G. M. Felker and C. O'Connor have acted as consultants for Roche. T. Ahmad declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, T., Fiuzat, M., Felker, G. et al. Novel biomarkers in chronic heart failure. Nat Rev Cardiol 9, 347–359 (2012). https://doi.org/10.1038/nrcardio.2012.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.37

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research