Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The disconnect between phase II and phase III trials of drugs for heart failure

Abstract

Hospitalization for heart failure (HF) is a clinical entity associated with high postdischarge morbidity and mortality, yet few therapies are available to improve outcomes in patients with this condition. In the past decade, large phase III studies of HF treatments have failed to demonstrate drug efficacy, safety, or both, despite encouraging results from preceding phase II trials. This Review is focused on this disconnect between the results of phase II and phase III trials of drugs for HF and discusses findings from five drug-development programs (for levosimendan, tezosentan, tolvaptan, rolofylline, and nesiritide) to shed light on common themes in clinical trials conducted in patients hospitalized for HF. In particular, the importance of selecting the 'right' patient population, drug, and clinical end points to optimize the trial design is discussed. Areas that require further investigation are highlighted and we suggest possible directions that will help to guide future clinical trials in these patients. Large, expensive phase III trials should not be initiated without adequate phase II evidence or on the basis of overly optimistic interpretation of phase II data. Additionally, drug development programs should be targeted not only to change short-term symptoms, but also to improve the postdischarge event rate.

Key Points

  • Patients hospitalized for heart failure (HF) are at a significantly high risk of postdischarge death or rehospitalization, despite conventional therapies

  • Large phase III clinical trials in patients hospitalized for HF have mainly provided negative results for primary safety or efficacy end points, despite encouraging results from preceding phase II studies

  • Inpatient surrogate end points such as dyspnoea relief might not correlate with postdischarge end points such as mortality and rehospitalization

  • Successful clinical trials require proper selection of the 'right' drug, target patient population, and end points

  • Analysis of five drug development programs (for levosimendan, tezosentan, tolvaptan, rolofylline, and nesiritide) will help to dissect the disconnect between phase II and phase III trials in patients hospitalized for HF

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the stages in clinical development of pharmacological and nonpharmacological therapies in patients hospitalized for heart failure.

Similar content being viewed by others

References

  1. Roger, V. L. et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2012).

    PubMed  Google Scholar 

  2. Jencks, S. F., Williams, M. V. & Coleman, E. A. Rehospitalizations among patients in the Medicare fee-for-service program. N. Engl. J. Med. 360, 1418–1428 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, J., Normand, S. L., Wang, Y. & Krumholz, H. M. National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998–2008. JAMA 306, 1669–1678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fonarow, G. C. et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J. Am. Coll. Cardiol. 50, 768–777 (2007).

    Article  PubMed  Google Scholar 

  5. Joynt, K. E. & Jha, A. K. Thirty-day readmissions—truth and consequences. N. Engl. J. Med. 366, 1366–1369 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bueno, H. et al. Trends in length of stay and short-term outcomes among Medicare patients hospitalized for heart failure, 1993–2006. JAMA 303, 2141–2147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Curtis, L. H. et al. Early and long-term outcomes of heart failure in elderly persons, 2001–2005. Arch. Intern. Med. 168, 2481–2488 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, e391–e479 (2009).

    PubMed  Google Scholar 

  9. Fonarow, G. C. et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA 297, 61–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Gheorghiade, M. et al. Acute heart failure syndromes: current state and framework for future research. Circulation 112, 3958–3968 (2005).

    Article  PubMed  Google Scholar 

  11. Metra, M., Gheorghiade, M., Bonow, R. O. & Dei Cas, L. Postdischarge assessment after a heart failure hospitalization: the next step forward. Circulation 122, 1782–1785 (2010).

    Article  PubMed  Google Scholar 

  12. Gheorghiade, M. & Bonow, R. O. Heart failure: Early follow-up after hospitalization for heart failure. Nat. Rev. Cardiol. 7, 422–424 (2010).

    Article  PubMed  Google Scholar 

  13. Gheorghiade, M. et al. A comprehensive, longitudinal description of the in-hospital and post-discharge clinical, laboratory, and neurohormonal course of patients with heart failure who die or are re-hospitalized within 90 days: analysis from the EVEREST trial. Heart Fail. Rev. 17, 485–509 (2012).

    Article  PubMed  Google Scholar 

  14. Felker, G. M. et al. Clinical trials of pharmacological therapies in acute heart failure syndromes: lessons learned and directions forward. Circ. Heart Fail. 3, 314–325 (2010).

    Article  PubMed  Google Scholar 

  15. Gheorghiade, M. et al. Phase III clinical trial end points in acute heart failure syndromes: a virtual roundtable with the Acute Heart Failure Syndromes International Working Group. Am. Heart J. 157, 957–970 (2009).

    Article  PubMed  Google Scholar 

  16. O'Connor, C. M. et al. Causes of death and rehospitalization in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction: results from Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) program. Am. Heart J. 159, 841–849.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Joynt, K. E., Orav, E. J. & Jha, A. K. The association between hospital volume and processes, outcomes, and costs of care for congestive heart failure. Ann. Intern. Med. 154, 94–102 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ross, J. S. et al. Recent national trends in readmission rates after heart failure hospitalization. Circ. Heart Fail. 3, 97–103 (2010).

    Article  PubMed  Google Scholar 

  19. Fonarow, G. C. et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J. Am. Coll. Cardiol. 50, 768–777 (2007).

    Article  PubMed  Google Scholar 

  20. Bhatia, R. S. et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 355, 260–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Gheorghiade, M., Teerlink, J. R. & Mebazaa, A. Pharmacology of new agents for acute heart failure syndromes. Am. J. Cardiol. 96, 68G–73G (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Nieminen, M. S. et al. Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J. Am. Coll. Cardiol. 36, 1903–1912 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Slawsky, M. T. et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Study Investigators. Circulation 102, 2222–2227 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Moiseyev, V. S. et al. Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur. Heart J. 23, 1422–1432 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Follath, F. et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 360, 196–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Cleland, J. G., Freemantle, N., Coletta, A. P. & Clark, A. L. Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur. J. Heart Fail. 8, 105–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cleland, J. G. et al. Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronisation therapy in heart failure. Eur. J. Heart Fail. 6, 501–508 (2004).

    Article  PubMed  Google Scholar 

  28. Mebazaa, A. et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA 297, 1883–1891 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Aronson, D. & Burger, A. J. Neurohumoral activation and ventricular arrhythmias in patients with decompensated congestive heart failure: role of endothelin. Pacing Clin. Electrophysiol. 26, 703–710 (2003).

    Article  PubMed  Google Scholar 

  30. Aronson, D. & Burger, A. J. Neurohormonal prediction of mortality following admission for decompensated heart failure. Am. J. Cardiol. 91, 245–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Coletta, A. P. & Cleland, J. G. Clinical trials update: highlights of the scientific sessions of the XXIII Congress of the European Society of Cardiology--WARIS II, ESCAMI, PAFAC, RITZ-1 and TIME. Eur. J. Heart Fail. 3, 747–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Torre-Amione, G. et al. Hemodynamic and clinical effects of tezosentan, an intravenous dual endothelin receptor antagonist, in patients hospitalized for acute decompensated heart failure. J. Am. Coll. Cardiol. 42, 140–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Kaluski, E. et al. RITZ-5: randomized intravenous TeZosentan (an endothelin-A/B antagonist) for the treatment of pulmonary edema: a prospective, multicenter, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 41, 204–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. O'Connor, C. M. et al. Tezosentan in patients with acute heart failure and acute coronary syndromes: results of the Randomized Intravenous TeZosentan Study (RITZ-4). J. Am. Coll. Cardiol. 41, 1452–1457 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Cotter, G. et al. The hemodynamic and neurohormonal effects of low doses of tezosentan (an endothelin A/B receptor antagonist) in patients with acute heart failure. Eur. J. Heart Fail. 6, 601–609 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. McMurray, J. J. et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA 298, 2009–2019 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Ghali, J. K., Hamad, B., Yasothan, U. & Kirkpatrick, P. Tolvaptan. Nat. Rev. Drug Discov. 8, 611–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Francis, G. S. et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82, 1724–1729 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Gheorghiade, M. et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 291, 1963–1971 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gheorghiade, M. et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA 297, 1332–1343 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Konstam, M. A. et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297, 1319–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Udelson, J. E. et al. Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international, multicenter, randomized, placebo-controlled trial. J. Am. Coll. Cardiol. 52, 1540–1545 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Vallon, V., Muhlbauer, B. & Osswald, H. Adenosine and kidney function. Physiol. Rev. 86, 901–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Funaya, H. et al. Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95, 1363–1365 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Forman, D. E. et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J. Am. Coll. Cardiol. 43, 61–67 (2004).

    Article  PubMed  Google Scholar 

  46. Fonarow, G. C. et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 293, 572–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, G. L. et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J. Am. Coll. Cardiol. 47, 1987–1996 (2006).

    Article  PubMed  Google Scholar 

  48. Givertz, M. M. et al. The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J. Am. Coll. Cardiol. 50, 1551–1560 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Dittrich, H. C. et al. The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J. Card. Fail. 13, 609–617 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Cotter, G. et al. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J. Card. Fail. 14, 631–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Massie, B. M. et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N. Engl. J. Med. 363, 1419–1428 (2010).

    Article  PubMed  Google Scholar 

  52. Abraham, W. T. et al. Systemic hemodynamic, neurohormonal, and renal effects of a steady-state infusion of human brain natriuretic peptide in patients with hemodynamically decompensated heart failure. J. Card. Fail. 4, 37–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Krum, H. & Liew, D. New and emerging drug therapies for the management of acute heart failure. Intern. Med. J. 33, 515–520 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Hobbs, R. E. et al. Hemodynamic effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 78, 896–901 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Marcus, L. S. et al. Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion in patients with congestive heart failure. A double-blind, placebo-controlled, randomized crossover trial. Circulation 94, 3184–3189 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Mills, R. M. et al. Sustained hemodynamic effects of an infusion of nesiritide (human b-type natriuretic peptide) in heart failure: a randomized, double-blind, placebo-controlled clinical trial. Natrecor Study Group. J. Am. Coll. Cardiol. 34, 155–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Colucci, W. S. et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N. Engl. J. Med. 343, 246–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF) Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 287, 1531–1540 (2002).

  59. Sackner-Bernstein, J. D., Kowalski, M., Fox, M. & Aaronson, K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 293, 1900–1905 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Sackner-Bernstein, J. D., Skopicki, H. A. & Aaronson, K. D. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111, 1487–1491 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. O'Connor, C. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Follath, F., Franco, F. & Cardoso, J. S. European experience on the practical use of levosimendan in patients with acute heart failure syndromes. Am. J. Cardiol. 96, 80G–85G (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Felker, G. M. et al. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J. Am. Coll. Cardiol. 41, 997–1003 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Gheorghiade, M. & Peterson, E. D. Improving postdischarge outcomes in patients hospitalized for acute heart failure syndromes. JAMA 305, 2456–2457 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Gheorghiade, M. & Ruschitzka, F. Beyond dyspnoea as an endpoint in acute heart failure trials. Eur. Heart J. 32, 1442–1445 (2011).

    Article  PubMed  Google Scholar 

  66. Mebazaa, A. et al. The impact of early standard therapy on dyspnoea in patients with acute heart failure: the URGENT-dyspnoea study. Eur. Heart J. 31, 832–841 (2010).

    Article  PubMed  Google Scholar 

  67. Pang, P. S. et al. A proposal to standardize dyspnoea measurement in clinical trials of acute heart failure syndromes: the need for a uniform approach. Eur. Heart J. 29, 816–824 (2008).

    Article  PubMed  Google Scholar 

  68. Pang, P. S. et al. Effects of tolvaptan on dyspnoea relief from the EVEREST trials. Eur. Heart J. 30, 2233–2240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blair, J. E. et al. Weight changes after hospitalization for worsening heart failure and subsequent re-hospitalization and mortality in the EVEREST trial. Eur. Heart J. 30, 1666–1673 (2009).

    Article  PubMed  Google Scholar 

  70. Gheorghiade, M. et al. Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA 296, 2217–2226 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Udelson, J. E. et al. Multicenter, randomized, double-blind, placebo-controlled study on the effect of oral tolvaptan on left ventricular dilation and function in patients with heart failure and systolic dysfunction. J. Am. Coll. Cardiol. 49, 2151–2159 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Blair, J. E. et al. Changes in renal function during hospitalization and soon after discharge in patients admitted for worsening heart failure in the placebo group of the EVEREST trial. Eur. Heart J. 32, 2563–2572 (2011).

    Article  PubMed  Google Scholar 

  73. Teerlink, J. R. et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet 373, 1429–1439 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Gheorghiade, M. & Pang, P. S. Acute heart failure syndromes. J. Am. Coll. Cardiol. 53, 557–573 (2009).

    Article  PubMed  Google Scholar 

  75. Adams, K. F. Jr et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 149, 209–216 (2005).

    Article  PubMed  Google Scholar 

  76. Cleland, J. G. et al. The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur. Heart J. 24, 442–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Gheorghiade, M. et al. Cinaciguat, a soluble guanylate cyclase activator: results from the randomized, controlled, phase IIb COMPOSE programme in acute heart failure syndromes. Eur. J. Heart Fail. 14, 1056–1066 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Shin, D. D. et al. Review of current and investigational pharmacologic agents for acute heart failure syndromes. Am. J. Cardiol. 99, 4A–23A (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Collins, S. P. et al. Bayesian adaptive trial design in acute heart failure syndromes: moving beyond the mega trial. Am. Heart J. 164, 138–145 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Vaduganathan, S. J. Greene, and J. Butler wrote the article. All authors made substantial contributions to researching data for article, discussion of content, and reviewing and editing of manuscript before submission.

Corresponding author

Correspondence to Mihai Gheorghiade.

Ethics declarations

Competing interests

M. Gheorghiade declares that he has been a consultant for the following companies: Abbott, Astellas, AstraZeneca, Bayer, Corthera, Cytokinetics, Debiopharm, Errekappa Euroterapici, GlaxoSmithKline, Johnson & Johnson, Medtronic, Merck, Novartis, Otsuka, PDL Biopharma, PeriCor, Sanofi, Sigma-Tau, and Solvay Pharmaceuticals. J. Butler declares that he has been a consultant for Amgen, Bayer, CardioMEMS, Gambro, Ono Pharmaceutical, Takeda, and Trevena, and he has received research grants from GE Healthcare, Medtronic, National Heart Lung and Blood Institute, and National Institutes of Health. M. Vaduganathan, S. J. Greene, and A. P. Ambrosy declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaduganathan, M., Greene, S., Ambrosy, A. et al. The disconnect between phase II and phase III trials of drugs for heart failure. Nat Rev Cardiol 10, 85–97 (2013). https://doi.org/10.1038/nrcardio.2012.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing