Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid control in patients with diabetes mellitus

Abstract

Patients with diabetes mellitus are at increased risk of cardiovascular disease (CVD). Dyslipidemia, an important component of the insulin resistance syndrome and type 2 diabetes, is strongly related to CVD risk and is open to therapeutic intervention. Statins have proved to be safe, very-well tolerated, and highly effective in reducing the levels of LDL cholesterol and apolipoprotein B. Primary and secondary CVD prevention trials have shown that use of statins leads to highly significant reductions in the incidence of major CVD events. A wealth of data on the outcomes of statin therapy is now available to guide clinical practice in the population of patients with type 2 diabetes. Statin therapy in patients with type 1 diabetes seems to have a similar benefit to that seen in patients with type 2 diabetes. However, despite statin therapy, high CVD risk persists in these populations. More-intensive statin therapy produces greater reduction in the incidence of CVD events, but a more-global approach to lipid management is likely to result in further risk reduction. After reductions in the levels of LDL cholesterol and apolipoprotein B, the next target of lipid-lowering therapy is to increase HDL-cholesterol levels, which tend to be low in patients with type 2 diabetes. The most effective HDL-cholesterol-raising agent currently available for use in clinical practice is niacin. Trials with surrogate end points have pointed to the cardiovascular benefit of adding niacin to statin therapy. Large CVD end point trials, which include many patients with diabetes, are underway to test the combination of a statin and niacin versus a statin alone.

Key Points

  • Both type 1 and type 2 diabetes mellitus are associated with a substantially increased burden of cardiovascular disease

  • Quantitative and qualitative changes in lipids and lipoproteins are common in type 2 diabetes and contribute to cardiovascular risk

  • Statins are highly effective in lowering the levels of LDL cholesterol and other apolipoprotein-B-containing lipoproteins in patients with type 1 and type 2 diabetes

  • Statins have been shown to reduce the incidence of major cardiovascular events in both primary and secondary prevention trials in these patient populations

  • Despite effective statin therapy, considerable residual cardiovascular risk persists in these patients; a more-global approach to lipid management that includes measures to increase HDL-cholesterol levels might be appropriate

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of treatment with atorvastatin on primary and secondary end points in the Collaborative Atorvastatin Diabetes Study (CARDS).35
Figure 2: Cholesterol Treatment Trialists' meta-analysis on the efficacy of statin therapy in people with diabetes mellitus.41
Figure 3: Meta-analysis of cardiovascular outcomes of intensive versus moderate statin therapy.59

Similar content being viewed by others

References

  1. Zimmet, P. Z. & Alberti K. G. The changing face of macrovascular disease in non-insulin dependent diabetes mellitus: an epidemic in progress. Lancet 350 (Suppl. 1), 1–4 (1997).

    Google Scholar 

  2. Bloomgarden, Z. T. Cardiovascular disease in diabetes. Diabetes Care 31, 1260–1266 (2008).

    PubMed  Google Scholar 

  3. Cubbon, R. M. et al. for the EMMACE Investigators. Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3,000 patients between 1995 and 2003. Eur. Heart J. 28, 540–545 (2007).

    PubMed  Google Scholar 

  4. Rydén, L. et al. Guidelines on diabetes, pre-diabetes and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Disease of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 28, 88–136 (2007).

    PubMed  Google Scholar 

  5. Burke, A. P. et al. Morphologic findings of coronary atherosclerotic plaques in diabetics. A postmortem study. Arterioscler. Thromb. Vasc. Biol. 24, 1266–1271 (2004).

    CAS  PubMed  Google Scholar 

  6. Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in non diabetic subjects with and without myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    CAS  PubMed  Google Scholar 

  7. Whiteley, L., Padmanabhan, S., Hole, D. & Isles, C. Should diabetes be considered a coronary heart disease risk equivalent? Results from the Renfrew and Paisley Survey. Diabetes Care 28, 1588–1593 (2005).

    PubMed  Google Scholar 

  8. Malmberg, K. et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organisation to Assess Strategies for Ischemic Syndromes) Registry. Circulation 102, 1014–1019 (2000).

    CAS  PubMed  Google Scholar 

  9. Evans, J. M., Wang, J. & Morris, A. D. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. BMJ 324, 939–942 (2002).

    PubMed  PubMed Central  Google Scholar 

  10. Lee, C. D. et al. for the ARIC Study Investigators. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 109, 855–860 (2004).

    PubMed  Google Scholar 

  11. Lotufo, P. A. et al. Diabetes and all-cause and coronary mortality among US male physicians. Arch. Intern. Med. 161, 242–247 (2001).

    CAS  PubMed  Google Scholar 

  12. Fox, C. S. et al. Lifetime risk of cardiovascular disease among individuals with and without diabetes stratified by obesity status in the Framingham Heart Study. Diabetes Care 31, 1582–1584 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Alexander, C. M. et al. for the NHANES III and the NCEP. NECP-defined metabolic syndrome, diabetes and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52, 1210–1214 (2003).

    CAS  PubMed  Google Scholar 

  14. Grundy, S. M. Diabetes and coronary risk equivalency: what does it mean? Diabetes Care 29, 457–460 (2006).

    PubMed  Google Scholar 

  15. Soedamah-Muthu, S. S. et al. High risk of cardiovascular disease in patients with type 1 diabetes in the UK: a cohort study using the general practice research database. Diabetes Care 29, 798–804 (2006).

    PubMed  Google Scholar 

  16. Mazzone, T., Chait, A. & Plutzky, J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 371, 1800–1809 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taskinen, M. R. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46, 733–749 (2003).

    PubMed  Google Scholar 

  18. Eckel, R. H. Diabetic dyslipidemia and cardiovascular risk. Curr. Diab. Rep. 8, 421–423 (2008).

    CAS  PubMed  Google Scholar 

  19. Adiels, M., Olofsson, S. O., Taskinen, M. R. & Borén, J. Overproduction of very low density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 1225–1236 (2008).

    CAS  PubMed  Google Scholar 

  20. Chahil, T. J. & Ginsberg, H. N. Diabetic dyslipidemia. Endocrinol. Metab. Clin. North Am. 35, 491–510 (2006).

    CAS  PubMed  Google Scholar 

  21. Turner, R. C. et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 316, 823–828 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yusuf, S. et al. for the INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937–952 (2004).

    PubMed  Google Scholar 

  23. Kannel, W. B. & Vasan, R. S. Triglycerides as vascular risk factors: new epidemiologic insights. Curr. Opin. Cardiol. 4, 345–350 (2009).

    Google Scholar 

  24. American Diabetes Association. Nutritional Recommendations and Interventions for Diabetes: a position statement of the American Diabetes Association. Diabetes Care 30 (Suppl. 1), S48–S65 (2008).

  25. Stossel, T. P. The discovery of statins. Cell 134, 903–905 (2008).

    CAS  PubMed  Google Scholar 

  26. Goldstein, J. L. & Brown, M. S. The LDL receptor Arterioscler Thromb. Vasc. Biol. 29, 431–438 (2009).

    CAS  Google Scholar 

  27. The Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4,444 people with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  28. Pyörälä, K. et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 20, 614–620 (1997).

    PubMed  Google Scholar 

  29. Haffner, S. M. et al. Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch. Int. Med. 159, 2661–2667 (1999).

    CAS  Google Scholar 

  30. Goldberg, R. B. et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial survivors with average cholesterol levels: subgroup analyses in the Cholesterol and Recurrent Events (CARE) trial. The CARE Investigators. Circulation 98, 2513–2519 (1998).

    CAS  PubMed  Google Scholar 

  31. Keech, A. et al. for the LIPID Study Group. Secondary prevention of cardiovascular events with long-term pravastatin in patients with diabetes or impaired fasting glucose: results from the LIPID trial. Diabetes Care 26, 2713–2721 (2003).

    CAS  PubMed  Google Scholar 

  32. Collins, R. et al. for the Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5,963 people with diabetes: a randomised placebo-controlled trial. Lancet 361, 2005–2016 (2003).

    PubMed  Google Scholar 

  33. Shepherd, J. et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care 29, 1220–1226 (2006).

    CAS  PubMed  Google Scholar 

  34. LaRosa, J. C. et al. for the TNT Investigators. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med. 352, 1452–1435 (2005).

    Google Scholar 

  35. Colhoun, H. M. et al. for the CARDS Investigators. Primary prevention of cardiovascular disease in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364, 685–696 (2004).

    CAS  PubMed  Google Scholar 

  36. Colhoun, H. M. et al. for the CARDS Investigators Rapid emergence of effect of atorvastatin on cardiovascular outcomes in the Collaborative Atorvastatin Diabetes Study (CARDS). Diabetologia 48, 2482–2485 (2005).

    CAS  PubMed  Google Scholar 

  37. Hitman, G. A. et al. for the CARDS Investigators. Stroke prediction and stroke prevention with atorvastatin in the Collaborative Atorvastatin Diabetes Study (CARDS). Diabet. Med. 24, 1313–1321 (2007).

    CAS  PubMed  Google Scholar 

  38. Sever, P. S. et al. for the ASCOT Investigators. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361, 1149–1158 (2003).

    CAS  PubMed  Google Scholar 

  39. Sever, P. S. et al. Reduction in cardiovascular events with atorvastatin in 2,532 patients with type 2 diabetes: Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm (ASCOT-LLA). Diabetes Care 28, 1151–1157 (2005).

    CAS  PubMed  Google Scholar 

  40. Knopp, R. H., d'Emden, M., Smilde, J. G. & Pocock, S. J. Efficacy and safety of atorvastatinin the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-Insulin-Dependent Diabetes Mellitus. Diabetes Care 29, 1478–1485 (2006).

    CAS  PubMed  Google Scholar 

  41. Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371, 117–125 (2008).

  42. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation 110, 227–239 (2004).

    PubMed  Google Scholar 

  43. British Cardiac Society. et al. JBS2: Joint British Societies' guidelines on prevention of cardiovascular disease in clinical practice. Heart 91 (Suppl. 5), v1–v52 (2005).

  44. Wanner, C. et al. for the German Diabetes and Dialysis Study Investigators. Atorvastatin in patients with type 2 diabetes undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    CAS  PubMed  Google Scholar 

  45. Fellström, B. C. et al. for the AURORA Study Group. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    PubMed  Google Scholar 

  46. Shepherd, J. et al. for the TNT Investigators. Intensive lipid-lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J. Am. Coll. Cardiol. 51, 1448–1454 (2008).

    CAS  PubMed  Google Scholar 

  47. Colhoun, H. M. et al. for the CARDS Investigators. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am. J. Kidney Dis. 54, 810–819 (2009).

    CAS  PubMed  Google Scholar 

  48. Fried, L. F., Orchard, T. J. & Kasiske, B. L. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 59, 260–269 (2001).

    CAS  PubMed  Google Scholar 

  49. Sandhu, S., Wiebe, N., Fried, L. F. & Tonelli, M. Statins for improving renal outcomes; a meta-analysis. J. Am. Soc. Nephrol. 17, 2006–2016 (2006).

    CAS  PubMed  Google Scholar 

  50. Strippoli, G. F. et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ 336, 645–651 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Newman, C. B. et al. for the CARDS Investigators. The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARDS). Diab. Vasc. Dis. Res. 5, 177–183 (2008).

    PubMed  Google Scholar 

  52. Armitage, J. The safety of statins in clinical practice. Lancet 370, 1781–1790 (2007).

    CAS  PubMed  Google Scholar 

  53. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).

    CAS  PubMed  Google Scholar 

  54. Cannon, C. P. Balancing the benefits of statins versus a new risk—diabetes. Lancet 375, 700–701 (2010).

    PubMed  Google Scholar 

  55. Baigent, C. et al. for the CTT Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    CAS  PubMed  Google Scholar 

  56. Cannon, C. P. et al. for the Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22 Investigators. Intensive versus moderate lipid-lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495–1504 (2004).

    CAS  PubMed  Google Scholar 

  57. de Lemos, J. A. et al. for the A to Z Investigators. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA 292, 1307–1316 (2004).

    CAS  PubMed  Google Scholar 

  58. Pedersen, T. R. et al. for the IDEAL Study Group. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA 294, 2437–2445 (2005).

    CAS  PubMed  Google Scholar 

  59. Cannon, C. P., Steinberg, B. A., Murphy, S. A., Mega, J. L. & Braunwald, E. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J. Am. Coll. Cardiol. 48, 438–445 (2006).

    CAS  PubMed  Google Scholar 

  60. Murphy, S. A. et al. Effect of intensive lipid-lowering therapy on mortality after acute coronary syndrome (a patient-level analysis of the Aggrastat to Zocor and Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22 trials). Am. J. Cardiol. 100, 1047–1051 (2007).

    CAS  PubMed  Google Scholar 

  61. Ahmed, S., Cannon, C. P., Murphy, S. A. & Braunwald, E. Acute coronary syndromes and diabetes: is intensive lipid lowering beneficial? Results of the PROVE IT-TIMI 22 trial. Eur. Heart J. 27, 2323–2329 (2006).

    CAS  PubMed  Google Scholar 

  62. Nissen, S. E. et al. for the REVERSAL Investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    CAS  PubMed  Google Scholar 

  63. Nissen, S. E. et al. for the ASTEROID Investigators. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).

    CAS  PubMed  Google Scholar 

  64. Nicholls, S. J. et al. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling. A pooled analysis of 5 intravascular ultrasound trials. J. Am. Coll. Cardiol. 52, 255–262 (2008).

    CAS  PubMed  Google Scholar 

  65. Brewer, H. B. Jr. Increasing HDL cholesterol levels. N. Engl. J. Med. 350, 1491–1494 (2004).

    CAS  PubMed  Google Scholar 

  66. Assmann, G. & Gotto, A. M. Jr. HDL cholesterol and protective factors in atherosclerosis. Circulation 109 (Suppl. 1), III8–III14 (2004).

    PubMed  Google Scholar 

  67. Sacks, F. M. et al. Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation 102, 1893–1900 (2000).

    CAS  PubMed  Google Scholar 

  68. West of Scotland Coronary Prevention Study Group. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 97, 1440–1445 (1998).

  69. Barter, P. et al. for the TNT Investigators. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357, 1301–1310 (2007).

    CAS  PubMed  Google Scholar 

  70. Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987).

    CAS  PubMed  Google Scholar 

  71. Rubins, H. B. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 241, 410–418 (1999).

    Google Scholar 

  72. Shitara, Y. & Sugiyama, Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors; drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol. Ther. 112, 71–105 (2006).

    CAS  PubMed  Google Scholar 

  73. Keech, A. et al. for the FIELD Study Investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9,795 people with type 2 diabetes (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    CAS  PubMed  Google Scholar 

  74. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

  75. Altchul, R. & Hoffer, A. Effects of salts of nicotinic acid on serum cholesterol. BMJ 20, 13–14 (1958).

    Google Scholar 

  76. Altschul, R., Hoffer, A. & Stephen, J. D. Influence of nicotinic acid on serum cholesterol in man. Arch. Biochem. 54, 558–59 (1955).

    CAS  PubMed  Google Scholar 

  77. Carlson, L. A. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 258, 94–114 (2005).

    CAS  PubMed  Google Scholar 

  78. Shepherd, J. et al. for the European Consensus Panel. Nicotinic acid in the management of dyslipidaemia with diabetes and metabolic syndrome: a position paper developed by a European Consensus Panel. Curr. Med. Res. Opin. 21, 665–682 (2005).

    CAS  PubMed  Google Scholar 

  79. Clarke, R. et al. for the PROCARDIS Consortium. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    CAS  PubMed  Google Scholar 

  80. McCormack, P. L. & Keating, G. M. Prolonged-release nicotinic acid: a review of its use in the treatment of dyslipidaemia. Drugs 65, 2719–2740 (2005).

    CAS  PubMed  Google Scholar 

  81. Paolini, J. F. et al. Effects of laropiprant on nicotinic acid-induced flushing in patients with dyslipidemia. Am. J. Cardiol. 101, 625–630 (2008).

    CAS  PubMed  Google Scholar 

  82. Goldberg, R. B. & Jacobson, T. A. Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clin. Proc. 83, 470–478 (2008).

    CAS  PubMed  Google Scholar 

  83. Atherothrombosis Intervention in Metabolic Syndrome with low HDL/Triglyceride and Impact on Global health Outcomes [online], (2011).

  84. Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events [online]. (2011).

  85. Brunzell, J. D. et al. Lipoprotein management in patients with cardiometabolic risk: consensus conference report from the American Diabetes Association and the American Colege of Cardiology Foundation. J. Am. Coll. Cardiol. 51, 1512–1524 (2008).

    PubMed  Google Scholar 

  86. Taylor, A. J. et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N. Engl. J. Med. 361, 2113–2122 (2009).

    CAS  PubMed  Google Scholar 

  87. Lee, J. M. et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 54, 1787–1794 (2009).

    CAS  PubMed  Google Scholar 

  88. Barter, P. J. et al. for the ILLUMINATE Investigators. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    CAS  PubMed  Google Scholar 

  89. Stein, E. A. et al. Safety and tolerability of dalcetrapib (RO4607381/JTT-705): results from a 48-week trial. Eur. Heart J. 31, 480–488 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Krishna, R. et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet 370, 1907–1914 (2007).

    CAS  PubMed  Google Scholar 

  91. Serruys, P. W. et al. for the LIPS Investigators. Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA 287, 3215–3222 (2002).

    CAS  PubMed  Google Scholar 

  92. Athyros, V. G. et al. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. Curr. Med. Res. Opin. 18, 220–228 (2002).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D. J. Betteridge is a consultant and in the speakers bureau of the following companies: AstraZeneca, Kowa, MSD, Pfizer, Roche, and Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betteridge, D. Lipid control in patients with diabetes mellitus. Nat Rev Cardiol 8, 278–290 (2011). https://doi.org/10.1038/nrcardio.2011.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing