Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of disease: hypertrophic cardiomyopathy

Abstract

Hypertrophic cardiomyopathy (HCM) is the most-common monogenically inherited form of heart disease, characterized by thickening of the left ventricular wall, contractile dysfunction, and potentially fatal arrhythmias. HCM is also the most-common cause of sudden cardiac death in individuals younger than 35 years of age. Much progress has been made in the elucidation of the genetic basis of HCM, resulting in the identification of more than 900 individual mutations in over 20 genes. Interestingly, most of these genes encode sarcomeric proteins, such as myosin-7 (also known as cardiac muscle β-myosin heavy chain; MYH7), cardiac myosin-binding protein C (MYBPC3), and cardiac muscle troponin T (TNNT2). However, the molecular events that ultimately lead to the clinical phenotype of HCM are still unclear. We discuss several potential pathways, which include altered calcium cycling and sarcomeric calcium sensitivity, increased fibrosis, disturbed biomechanical stress sensing, and impaired cardiac energy homeostasis. An improved understanding of the pathological mechanisms involved will result in greater specificity and success of therapies for patients with HCM.

Key Points

  • Hypertrophic cardiomyopathy (HCM) is the most-common form of monogenic heart disease, affecting up to 0.2% of the population

  • The clinical course of HCM is remarkably variable, ranging from lifelong, asymptomatic, mutation-carrier status to early sudden cardiac death in adolescents

  • During the past 2 decades, much progress has been made in unraveling the genetic basis of HCM; disease-causing mutations have been identified in over 20 genes, mostly encoding sarcomeric proteins

  • The molecular mechanisms of HCM are unclear; potential pathways include altered calcium cycling and sarcomeric calcium sensitivity, increased fibrosis, disturbed biomechanical stress sensing, and impaired cardiac energy homeostasis

  • An improved understanding of the pathological mechanisms involved in HCM should increase the specificity and efficacy of therapy for this condition

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteins in which HCM-causing mutations have been identified.
Figure 2: Disease pathways of hypertrophic cardiomyopathy, and potential therapeutic interventions.

Similar content being viewed by others

References

  1. Ashrafian, H. & Watkins, H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J. Am. Coll. Cardiol. 49, 1251–1264 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Maron, B. J. et al. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276, 199–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Jarcho, J. A. et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med. 321, 1372–1378 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Arad, M., Seidman, J. G. & Seidman, C. E. Phenotypic diversity in hypertrophic cardiomyopathy. Hum. Mol. Genet. 11, 2499–2506 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Marian, A. J. & Roberts, R. The molecular genetic basis for hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 33, 655–670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McLeod, C. J. et al. Histologic characterization of hypertrophic cardiomyopathy with and without myofilament mutations. Am. Heart J. 158, 799–805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watkins, H. et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332, 1058–1064 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hershberger, R. E. et al. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2, 306–313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pinto, J. R., Parvatiyar, M. S., Jones, M. A., Liang, J. & Potter, J. D. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J. Biol. Chem. 283, 2156–2166 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Luedde, M. et al. Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc. Res. 86, 452–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Morrow, A. G., Koch, J. P., Maron, B. J., Kent, K. M. & Epstein, S. E. Left ventricular myotomy and myectomy in patients with obstructive hypertrophic cardiomyopathy and previous cardiac arrest. Am. J. Cardiol. 46, 313–316 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Sigwart, U. Non-surgical myocardial reduction for hypertrophic obstructive cardiomyopathy. Lancet 346, 211–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Maron, B. J. Hypertrophic cardiomyopathy: a systematic review. JAMA 287, 1308–1320 (2002).

    PubMed  Google Scholar 

  14. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Force, T. et al. Research priorities in hypertrophic cardiomyopathy: report of a Working Group of the National Heart, Lung, and Blood Institute. Circulation 122, 1130–1133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ho, C. Y. Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy. Circulation 122, 2430–2440 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Landstrom, A. P. & Ackerman, M. J. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation 122, 2441–2449 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thierfelder, L. et al. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  PubMed  Google Scholar 

  19. Ingles, J. et al. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J. Med. Genet. 42, e59 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Girolami, F. et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J. Am. Coll. Cardiol. 55, 1444–1453 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Olivotto, I. et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin. Proc. 83, 630–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Ho, C. Y. et al. Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation 102, 1950–1955 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Landstrom, A. P. et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell. Cardiol. 42, 1026–1035 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marian, A. J. Hypertrophic cardiomyopathy: from genetics to treatment. Eur. J. Clin. Invest. 40, 360–369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merante, F., Tein, I., Benson, L. & Robinson, B. H. Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. Am. J. Hum. Genet. 55, 437–446 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bos, J. M., Towbin, J. A. & Ackerman, M. J. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 201–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Tester, D. J. & Ackerman, M. J. Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123, 1021–1037 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahmad, F., Seidman, J. G. & Seidman, C. E. The genetic basis for cardiac remodeling. Annu. Rev. Genomics Hum. Genet. 6, 185–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Frey, N. et al. Transgenic rat hearts expressing a human cardiac troponin T deletion reveal diastolic dysfunction and ventricular arrhythmias. Cardiovasc. Res. 47, 254–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Watkins, H. & McKenna, W. J. The prognostic impact of septal myectomy in obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 46, 477–479 (2005).

    Article  PubMed  Google Scholar 

  31. Charron, P. et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation 97, 2230–2236 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Erdmann, J. et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 38, 322–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Oliva-Sandoval, M. J. et al. Insights into genotype-phenotype correlation in hypertrophic cardiomyopathy. Findings from 18 Spanish families with a single mutation in MYBPC3. Heart 96, 1980–1984 (2010).

    Article  PubMed  Google Scholar 

  34. Van Driest, S. L., Ommen, S. R., Tajik, A. J., Gersh, B. J. & Ackerman, M. J. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc. 80, 739–744 (2005).

    Article  PubMed  Google Scholar 

  35. Maron, B. J., Doerer, J. J., Haas, T. S., Tierney, D. M. & Mueller, F. O. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006 Circulation 119, 1085–1092 (2009).

    Article  PubMed  Google Scholar 

  36. Dimitrow, P. P., Czarnecka, D., Kawecka-Jaszcz, K. & Dubiel, J. S. Sex-based comparison of survival in referred patients with hypertrophic cardiomyopathy. Am. J. Med. 117, 65–66 (2004).

    Article  PubMed  Google Scholar 

  37. Lechin, M. et al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92, 1808–1812 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Marian, A. J., Yu, Q. T., Workman, R., Greve, G. & Roberts, R. Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 342, 1085–1086 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Schlossarek, S., Mearini, G. & Carrier, L. Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: Mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 50, 613–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keren, A., Syrris, P. & McKenna, W. J. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat. Clin. Pract. Cardiovasc. Med. 5, 158–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Olivotto, I., Cecchi, F., Poggesi, C. & Yacoub, M. H. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat. Rev. Cardiol. 6, 317–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Sata, M. & Ikebe, M. Functional analysis of the mutations in the human cardiac β-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. J. Clin. Invest. 98, 2866–2873 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lowey, S. Functional consequences of mutations in the myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Trends Cardiovasc. Med. 12, 348–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Michele, D. E., Albayya, F. P. & Metzger, J. M. Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant α-tropomyosins in adult cardiac myocytes. Nat. Med. 5, 1413–1417 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Frey, N., McKinsey, T. A. & Olson, E. N. Decoding calcium signals involved in cardiac growth and function. Nat. Med. 6, 1221–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Wehrens, X. H. & Marks, A. R. Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat. Rev. Drug Discov. 3, 565–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Bottinelli, R. et al. A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ. Res. 82, 106–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Knollmann, B. C. et al. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ. Res. 92, 428–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Robinson, P., Griffiths, P. J., Watkins, H. & Redwood, C. S. Dilated and hypertrophic cardiomyopathy mutations in troponin and α-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ. Res. 101, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Baudenbacher, F. et al. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J. Clin. Invest. 118, 3893–3903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kirschner, S. E. et al. Hypertrophic cardiomyopathy-related β-myosin mutations cause highly variable calcium sensitivity with functional imbalances among individual muscle cells. Am. J. Physiol. Heart Circ. Physiol. 288, H1242–H1251 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sweeney, H. L., Feng, H. S., Yang, Z. & Watkins, H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc. Natl Acad. Sci. U. S. A. 95, 14406–14410 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spirito, P. et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med. 342, 1778–1785 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Varnava, A. M. et al. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104, 1380–1384 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Varnava, A. M., Elliott, P. M., Mahon, N., Davies, M. J. & McKenna, W. J. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am. J. Cardiol. 88, 275–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Moreo, A. et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ. Cardiovasc. Imaging 2, 437–443 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wolf, C. M. et al. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proc. Natl Acad. Sci. U. S. A. 102, 18123–18128 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Konno, T. et al. Heterogeneous myocyte enhancer factor-2 (Mef2) activation in myocytes predicts focal scarring in hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. U. S. A. 107, 18097–18102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maron, B. J., Wolfson, J. K., Epstein, S. E. & Roberts, W. C. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 8, 545–557 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Teekakirikul, P. et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J. Clin. Invest. 120, 3520–3529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shivakumar, K., Dostal, D. E., Boheler, K., Baker, K. M. & Lakatta, E. G. Differential response of cardiac fibroblasts from young adult and senescent rats to ANG II. Am. J. Physiol. Heart Circ. Physiol. 284, H1454–H1459 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Marian, A. J., Senthil, V., Chen, S. N. & Lombardi, R. Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J. Am. Coll. Cardiol. 47, 827–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O'Hanlon, R. et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56, 867–874 (2010).

    Article  PubMed  Google Scholar 

  65. Ajmone Marsan, N. & Bax, J. J. Cardiomyopathies: Myocardial fibrosis assessed by CMR to predict events in HCM. Nat. Rev. Cardiol. 7, 604–606 (2010).

    Article  PubMed  Google Scholar 

  66. Maron, M. S. et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 54, 220–228 (2009).

    Article  PubMed  Google Scholar 

  67. Bruder, O. et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 56, 875–887 (2010).

    Article  PubMed  Google Scholar 

  68. Kim, J. B. et al. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316, 1481–1484 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ho, C. Y. et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 363, 552–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lombardi, R. et al. Myocardial collagen turnover in hypertrophic cardiomyopathy. Circulation 108, 1455–1460 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. de Jong, S., van Veen, T. A., de Bakker, J. M., Vos, M. A. & van Rijen, H. V. Biomarkers of myocardial fibrosis. J. Cardiovasc. Pharmacol. 57, 522–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Jellis, C., Martin, J., Narula, J. & Marwick, T. H. Assessment of nonischemic myocardial fibrosis. J. Am. Coll. Cardiol. 56, 89–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Querejeta, R. et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110, 1263–1268 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Zannad, F., Alla, F., Dousset, B., Perez, A. & Pitt, B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Circulation 102, 2700–2706 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Fassbach, M. & Schwartzkopff, B. Elevated serum markers for collagen synthesis in patients with hypertrophic cardiomyopathy and diastolic dysfunction. Z. Kardiol. 94, 328–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Flett, A. S. et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122, 138–144 (2010).

    Article  PubMed  Google Scholar 

  77. Frank, D. & Frey, N. Cardiac Z-disc signaling network. J. Biol. Chem. 286, 9897–9904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gautel, M. The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv. Exp. Med. Biol. 642, 176–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Solaro, R. J. Multiplex kinase signaling modifies cardiac function at the level of sarcomeric proteins. J. Biol. Chem. 283, 26829–26833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frank, D., Kuhn, C., Katus, H. A. & Frey, N. The sarcomeric Z-disc: a nodal point in signalling and disease. J. Mol. Med. 84, 446–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Geier, C. et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107, 1390–1395 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Frey, N. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat. Med. 10, 1336–1343 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Osio, A. et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 100, 766–768 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bos, J. M. et al. Genotype–phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol. Genet. Metab. 88, 78–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hayashi, T. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2192–2201 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Siegert, R. et al. A myomesin mutation associated with hypertrophic cardiomyopathy deteriorates dimerisation properties. Biochem. Biophys. Res. Commun. 405, 473–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Linke, W. A. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77, 637–648 (2008).

    CAS  PubMed  Google Scholar 

  89. Ashrafian, H., Redwood, C., Blair, E. & Watkins, H. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 19, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Spindler, M. et al. Diastolic dysfunction and altered energetics in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 101, 1775–1783 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Javadpour, M. M., Tardiff, J. C., Pinz, I. & Ingwall, J. S. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J. Clin. Invest. 112, 768–775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Frey, N. et al. Alterations of tension-dependent ATP utilization in a transgenic rat model of hypertrophic cardiomyopathy. J. Biol. Chem. 281, 29575–29582 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Luedde, M. et al. Decreased contractility due to energy deprivation in a transgenic rat model of hypertrophic cardiomyopathy. J. Mol. Med. 87, 411–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Crilley, J. G. et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 41, 1776–1782 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Lodi, R. et al. Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo31P magnetic resonance spectroscopy study. Cardiovasc. Res. 52, 111–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Tanaka, T., Sohmiya, K. & Kawamura, K. Is CD36 deficiency an etiology of hereditary hypertrophic cardiomyopathy? J. Mol. Cell. Cardiol. 29, 121–127 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Aoyama, T. et al. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J. Clin. Invest. 95, 2465–2473 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abozguia, K. et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Jeffrey, F. M., Alvarez, L., Diczku, V., Sherry, A. D. & Malloy, C. R. Direct evidence that perhexiline modifies myocardial substrate utilization from fatty acids to lactate. J. Cardiovasc. Pharmacol. 25, 469–472 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Cecchi, F. et al. Microvascular dysfunction, myocardial ischemia, and progression to heart failure in patients with hypertrophic cardiomyopathy. J. Cardiovasc. Transl. Res. 2, 452–461 (2009).

    Article  PubMed  Google Scholar 

  101. Olivotto, I. et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J. Am. Coll. Cardiol. 58, 839–848 (2011).

    Article  PubMed  Google Scholar 

  102. Petersen, S. E. et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115, 2418–2425 (2007).

    Article  PubMed  Google Scholar 

  103. Cecchi, F. et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med. 349, 1027–1035 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Olivotto, I. et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 47, 1043–1048 (2006).

    Article  PubMed  Google Scholar 

  105. Kwon, D. H. et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J. Am. Coll. Cardiol. 54, 242–249 (2009).

    Article  PubMed  Google Scholar 

  106. Fifer, M. A. & Vlahakes, G. J. Management of symptoms in hypertrophic cardiomyopathy. Circulation 117, 429–439 (2008).

    Article  PubMed  Google Scholar 

  107. Jensen, M. K. et al. Long-term outcome of percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: a Scandinavian multicenter study. Circ. Cardiovasc. Interv. 4, 256–265 (2011).

    Article  PubMed  Google Scholar 

  108. Maron, B. J., Yacoub, M. & Dearani, J. A. Controversies in cardiovascular medicine. Benefits of surgery in obstructive hypertrophic cardiomyopathy: bring septal myectomy back for European patients. Eur. Heart J. 32, 1055–1058 (2011).

    Article  PubMed  Google Scholar 

  109. Sanders, G. D., Hlatky, M. A. & Owens, D. K. Cost-effectiveness of implantable cardioverter-defibrillators. N. Engl. J. Med. 353, 1471–1480 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Lewin, A. S. & Hauswirth, W. W. Ribozyme gene therapy: applications for molecular medicine. Trends Mol. Med. 7, 221–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Lim, D. S. et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103, 789–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tsybouleva, N. et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation 109, 1284–1291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bauersachs, J. et al. HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: a randomized placebo-controlled pilot study. Eur. J. Clin. Invest. 37, 852–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Patel, R. et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 104, 317–324 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marian, A. J. Experimental therapies in hypertrophic cardiomyopathy. J. Cardiovasc. Transl. Res. 2, 483–492 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ashrafian, H., McKenna, W. J. & Watkins, H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ. Res. 109, 86–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Schwartz, M. L. et al. Clinical approach to genetic cardiomyopathy in children. Circulation 94, 2021–2038 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Smeitink, J. A. et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am. J. Hum. Genet. 79, 869–877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Smits, P. et al. Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 19, 394–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Mayr, J. A. et al. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am. J. Hum. Genet. 80, 478–484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching data for the article, discussion of content, and writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Hugo A. Katus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, N., Luedde, M. & Katus, H. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol 9, 91–100 (2012). https://doi.org/10.1038/nrcardio.2011.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing