Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restenosis after PCI. Part 2: prevention and therapy

Abstract

The techniques and materials used during percutaneous coronary intervention have advanced considerably over the past 3 decades, yet restenosis remains one of the major drawbacks of this procedure. Many innovative technologies, including drug-eluting stents, with or without specific polymers, and fully biodegradable stents have been and continue to be developed in the search for a safe and effective antirestenosis therapy. Remarkable advances in stent design and nanoparticle delivery systems ('nanovehicles') have already fueled revolutionary changes in the prevention and treatment of in-stent restenosis. In this Review we provide an overview of the latest innovations for optimizing outcomes of coronary stenting, and up-to-date information about prevention and treatment of in-stent restenosis.

Key Points

  • Although drug-eluting stents decrease the incidence of restenosis, they do not yet fully prevent this problem; furthermore, long-term safety issues indicate that new technologies are still warranted

  • New-generation polymer coatings, including biocompatible permanent polymers and biodegradable polymers, and stents without a polymer, represent innovative technologies that aim to preserve vascular biology in the long term

  • Biodegradable stents prevent the long-term problems associated with foreign material in the coronary arteries; the first human studies employing these stents show promising results

  • Nanoparticle-mediated drug delivery systems are expected to revolutionize the development of innovative therapeutic devices, allowing local or targeted delivery of the drug with an excellent biocompatibility profile

  • Drug-eluting balloons provide homogenous drug distribution in the vascular wall and represent a favorable option for the treatment of restenosis

  • Gene-eluting stents are expected to play an important role in the prevention of in-stent restenosis, particularly in patients with a high genetic-risk profile

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of biolimus A9.
Figure 2: The bioabsorbable stent.
Figure 3: Patterns of in-stent restenosis.

Similar content being viewed by others

References

  1. Gruntzig, A. R., Senning, A. & Siegenthaler, W. E. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N. Engl. J. Med. 301, 61–68 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Agema, W. R., Jukema, J. W., Pimstone, S. N. & Kastelein, J. J. Genetic aspects of restenosis after percutaneous coronary interventions: towards more tailored therapy. Eur. Heart J. 22, 2058–2074 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Regar, E. et al. Angiographic findings of the multicenter Randomized Study with the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL): sirolimus-eluting stents inhibit restenosis irrespective of the vessel size. Circulation 106, 1949–1956 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Simsek, C. et al. The unrestricted use of sirolimus- and paclitaxel-eluting stents results in better clinical outcomes during 6-year follow-up than bare-metal stents: an analysis of the RESEARCH (Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital) and T-SEARCH (Taxus-Stent Evaluated At Rotterdam Cardiology Hospital) registries. JACC Cardiovasc. Interv. 3, 1051–1058 (2010).

    Article  PubMed  Google Scholar 

  5. Stolker, J. M. et al. Predicting restenosis of drug-eluting stents placed in real-world clinical practice: derivation and validation of a risk model from the EVENT registry. Circ. Cardiovasc. Interv. 3, 327–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Jukema, J. W., Verschuren, J. J., Ahmed, T. A. & Quax, P. H. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2011.132.

    Article  PubMed  CAS  Google Scholar 

  7. Stettler, C. et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370, 937–948 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Daemen, J. et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369, 667–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Hassan, A. K. et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur. Heart J. 31, 1172–1180 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Cook, S. et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120, 391–399 (2009).

    Article  PubMed  Google Scholar 

  11. Pires, N. M., Eefting, D., de Vries, M. R., Quax, P. H. & Jukema, J. W. Sirolimus and paclitaxel provoke different vascular pathological responses after local delivery in a murine model for restenosis on underlying atherosclerotic arteries. Heart 93, 922–927 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schomig, A. et al. A meta-analysis of 16 randomized trials of sirolimus-eluting stents versus paclitaxel-eluting stents in patients with coronary artery disease. J. Am. Coll. Cardiol. 50, 1373–1380 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Smits, P. C. et al. 2-year follow-up of a randomized controlled trial of everolimus- and paclitaxel-eluting stents for coronary revascularization in daily practice. The COMPARE (Comparison of the everolimus eluting XIENCE-V stent with the paclitaxel eluting TAXUS LIBERTE stent in all-comers: a randomized open label trial) trial. J. Am. Coll. Cardiol. 58, 11–18 (2011).

    Article  PubMed  Google Scholar 

  14. Stone, G. W. et al. Randomized comparison of everolimus- and paclitaxel-eluting stents 2-year follow-up from the SPIRIT (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) IV trial. J. Am. Coll. Cardiol. 58, 19–25 (2011).

    Article  PubMed  Google Scholar 

  15. Leon, M. B. et al. A randomized comparison of the ENDEAVOR zotarolimus-eluting stent versus the TAXUS paclitaxel-eluting stent in de novo native coronary lesions 12-month outcomes from the ENDEAVOR IV trial. J. Am. Coll. Cardiol. 55, 543–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Rasmussen, K. et al. Efficacy and safety of zotarolimus-eluting and sirolimus-eluting coronary stents in routine clinical care (SORT OUT III): a randomised controlled superiority trial. Lancet 375, 1090–1099 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Silber, S., Windecker, S., Vranckx, P. & Serruys, P. W. Unrestricted randomised use of two new generation drug-eluting coronary stents: 2-year patient-related versus stent-related outcomes from the RESOLUTE All Comers trial. Lancet 377, 1241–1247 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Sehgal, S. N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 35, 7S–14S (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ostojic, M. et al. The pharmacokinetics of biolimus A9 after elution from the Nobori stent in patients with coronary artery disease: the NOBORI PK study. Catheter. Cardiovasc. Interv. 72, 901–908 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ostojic, M. C. et al. The pharmacokinetics of biolimus A9 after elution from the BioMatrix II stent in patients with coronary artery disease: the Stealth PK study. Eur. J. Clin. Pharmacol. 67, 389–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Vetrovec, G. W. et al. Sirolimus PK trial: a pharmacokinetic study of the sirolimus-eluting Bx Velocity stent in patients with de novo coronary lesions. Catheter. Cardiovasc. Interv. 67, 32–37 (2006).

    Article  PubMed  Google Scholar 

  22. Hamilos, M. I. et al. Differential effects of drug-eluting stents on local endothelium-dependent coronary vasomotion. J. Am. Coll. Cardiol. 51, 2123–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Serruys, P. W. et al. A randomised comparison of novolimus-eluting and zotarolimus-eluting coronary stents: 9-month follow-up results of the EXCELLA II study. EuroIntervention 6, 195–205 (2010).

    Article  PubMed  Google Scholar 

  24. Hezi-Yamit, A. et al. Novel high-throughput polymer biocompatibility screening designed for SAR (structure-activity relationship): application for evaluating polymer coatings for cardiovascular drug-eluting stents. Comb. Chem. High Throughput Screen 12, 664–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Udipi, K. et al. The next generation Endeavor Resolute stent: role of the BioLinx polymer system. EuroIntervention 3, 137–139 (2007).

    PubMed  Google Scholar 

  26. Talarico, G. P. et al. Exploring the possible clinical impact of polymer coating in DES technology: clinical outcome of consecutive patients treated by zotarolimus-eluting Endeavor stent and zotarolimus-eluting Resolute stent [abstract 42]. Eurointervention 7 (Suppl. M), M27 (2011).

    Google Scholar 

  27. Radeleff, B. et al. Restenosis of the CYPHER-Select, TAXUS-Express, and Polyzene-F nanocoated cobalt-chromium stents in the minipig coronary artery model. Cardiovasc. Intervent. Radiol. 31, 971–980 (2008).

    Article  PubMed  Google Scholar 

  28. Tamburino, C. et al. First-in-man 1-year clinical outcomes of the Catania coronary stent system with nanothin polyzene-F in de novo native coronary artery lesions: the ATLANTA (Assessment of The LAtest Non-Thrombogenic Angioplasty stent) trial. JACC Cardiovasc. Interv. 2, 197–204 (2009).

    Article  PubMed  Google Scholar 

  29. La Manna, A. et al. One-year outcomes of CATANIA coronary stent system with nanothin polyzene-F in a real-world unselected population: assessment of the latest nonthrombogenic angioplasty stent 2 (ATLANTA-2) study. Eurointervention 6 (Suppl. H), H13 (2010).

    Google Scholar 

  30. Windecker, S. et al. Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet 372, 1163–1173 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Byrne, R. A. et al. Randomized, non-inferiority trial of three limus agent-eluting stents with different polymer coatings: the Intracoronary Stenting and Angiographic Results: Test Efficacy of 3 Limus-Eluting Stents (ISAR-TEST-4) Trial. Eur. Heart J. 30, 2441–2449 (2009).

    Article  PubMed  Google Scholar 

  32. Krucoff, M. W. et al. A novel bioresorbable polymer paclitaxel-eluting stent for the treatment of single and multivessel coronary disease: primary results of the COSTAR (Cobalt Chromium Stent With Antiproliferative for Restenosis) II study. J. Am. Coll. Cardiol. 51, 1543–1552 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Serruys, P. W. et al. LEADERS: 3-year follow-up from a prospective, randomized, trial of biolimus A9-eluting stents with a bioabsorbable polymer vs sirolimus-eluting stents with a durable polymer [abstract TCT-26]. J. Am. Coll. Cardiol. 56 (13 Suppl. 1), B9 (2010).

    Google Scholar 

  34. US National Institutes of Health. Test efficacy of biodegradable and permanent limus-eluting stents (ISAR-TEST6). ClinicalTrials.gov [online], (2010).

  35. Vorpahl, M., Finn, A. V., Nakano, M. & Virmani R. The bioabsorption process: tissue and cellular mechanisms and outcomes. Eurointervention 5 (Suppl. F), F28–F35 (2009).

    Article  PubMed  Google Scholar 

  36. van der Giessen, W. J. et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94, 1690–1697 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Lockwood, N. A. et al. In vitro and in vivo characterization of novel biodegradable polymers for application as drug-eluting stent coatings. J. Biomater. Sci. Polym. Ed. 21, 529–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Granada, J. F. et al. Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circ. Cardiovasc. Interv. 3, 257–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Byrne, R. A. et al. Randomised trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis: 2-year follow-up results. Heart 95, 1489–1494 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Byrne, R. A. et al. Durability of antirestenotic efficacy in drug-eluting stents with and without permanent polymer. JACC Cardiovasc. Interv. 2, 291–299 (2009).

    Article  PubMed  Google Scholar 

  41. Tada, N. et al. Polymer-free biolimus A9-coated stent demonstrates more sustained intimal inhibition, improved healing, and reduced inflammation compared with a polymer-coated sirolimus-eluting cypher stent in a porcine model. Circ. Cardiovasc. Interv. 3, 174–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Costa, R. et al. De novo coronary lesions treated with the novel polymer-free Biolimus-A9 coated stents: Four- and twelve-month angiographic results from the prospective, randomized, multicenter BIOFREEDOM clinical trial [abstract 188]. EuroIntervention 7 (Suppl. M) (2011).

  43. Adriaenssens, T. et al. Does addition of estradiol improve the efficacy of a rapamycin-eluting stent? Results of the ISAR-PEACE randomized trial. J. Am. Coll. Cardiol. 49, 1265–1271 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Byrne, R. A. et al. 2-year clinical and angiographic outcomes from a randomized trial of polymer-free dual drug-eluting stents versus polymer-based Cypher and Endeavor drug-eluting stents. J. Am. Coll. Cardiol. 55, 2536–2543 (2010).

    Article  PubMed  Google Scholar 

  45. Massberg, S. et al. Polymer-free sirolimus- and probucol-eluting versus new generation zotarolimus-eluting stents in coronary artery disease: the Intracoronary Stenting and Angiographic Results: Test Efficacy of Sirolimus- and Probucol-Eluting Versus Zotarolimus-Eluting Stents (ISAR-TEST 5) Trial. Circulation 124, 624–632 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Kipshidze, N. et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J. Am. Coll. Cardiol. 44, 733–739 (2004).

    CAS  PubMed  Google Scholar 

  47. Shirota, T., Yasui, H., Shimokawa, H. & Matsuda, T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 24, 2295–2302 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Co, M. et al. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction: intermediate- to long-term clinical follow-up. Am. Heart J. 155, 128–132 (2008).

    Article  PubMed  Google Scholar 

  49. Lee, Y. P. et al. Endothelial progenitor cell capture stent implantation in patients with ST-segment elevation acute myocardial infarction: one year follow-up. EuroIntervention 5, 698–702 (2010).

    Article  PubMed  Google Scholar 

  50. Klomp, M., Beijk, M. A., Verouden, N. J., Tijssen, J. G. & de Winter, R. J. Design and rationale of the TRI-stent adjudication study (TRIAS) program. Am. Heart J. 158, 527–532 (2009).

    Article  PubMed  Google Scholar 

  51. Inoue, T. et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation: impact on restenosis. Circulation 115, 553–561 (2007).

    Article  PubMed  Google Scholar 

  52. Nakazawa, G. et al. Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization. JACC Cardiovasc. Interv. 3, 68–75 (2010).

    Article  PubMed  Google Scholar 

  53. US National Institutes of Health. Safety and effectiveness study of combo bio-engineered everolimus eluting stent (REMEDEE). ClinicalTrials.gov [online], (2011).

  54. Wöhrle, J. et al. Prospective randomised trial evaluating a paclitaxel-coated balloon in patients treated with endothelial progenitor cell capturing stents for de novo coronary artery disease. Heart 97, 1338–1342 (2011).

    Article  PubMed  Google Scholar 

  55. Garg, S. & Serruys, P. W. Coronary stents: looking forward. J. Am. Coll. Cardiol. 56, S43–S78 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Windecker, S. et al. Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization: the TiNOX trial. Circulation 111, 2617–2622 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Moschovitis, A. et al. Randomised comparison of titanium-nitride-oxide coated stents with bare metal stents: five year follow-up of the TiNOX trial. EuroIntervention 6, 63–68 (2010).

    Article  PubMed  Google Scholar 

  58. Karjalainen, P. P. et al. Two-year follow-up after percutaneous coronary intervention with titanium-nitride-oxide-coated stents versus paclitaxel-eluting stents in acute myocardial infarction. Ann. Med. 41, 599–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Karjalainen, P. P., Annala, A. P., Ylitalo, A., Vahlberg, T. & Airaksinen, K. E. Long-term clinical outcome with titanium-nitride-oxide-coated stents and paclitaxel-eluting stents for coronary revascularization in an unselected population. Int. J. Cardiol. 144, 42–46 (2010).

    Article  PubMed  Google Scholar 

  60. Karjalainen, P. P. A prospective, randomised and multicenter trial comparing a Titan-2 BAS and Xience-V stent: the BASE-ACS trial. Presented at EuroPCR 2011.

  61. Pilgrim, T. et al. Comparison of titanium-nitride-oxide-coated stents with zotarolimus-eluting stents for coronary revascularization a randomized controlled trial. JACC Cardiovasc. Interv. 4, 672–682 (2011).

    Article  PubMed  Google Scholar 

  62. Lin, P. H. et al. Rheolytic pharmacomechanical thrombectomy in experimental chronic deep vein thrombosis: effect of L-arginine on thrombogenicity and endothelial vasomotor function. World J. Surg. 31, 664–675 (2007).

    Article  PubMed  Google Scholar 

  63. Fajadet, J. The future of bioactive stents: TiTAN OPTIMAX and VINCI Bio Active Eluting stent. Presented at EuroPCR 2011.

  64. Meyers, S. R., Kenan, D. J., Khoo, X. & Grinstaff, M. W. Bioactive stent surface coating that promotes endothelialization while preventing platelet adhesion. Biomacromolecules 12, 533–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barber, T. A. et al. Peri-implant bone formation and implant integration strength of peptide-modified p(AAM-co-E G/AAC) interpenetrating polymer network-coated titanium implants. J. Biomed. Mater. Res. A. 80, 306–320 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. Kastrati, A. et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103, 2816–2821 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Pache, J. et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41, 1283–1288 (2003).

    Article  PubMed  Google Scholar 

  68. Stone, G. W. et al. A prospective, randomized evaluation of a novel everolimus-eluting coronary stent: the PLATINUM (A Prospective, Randomized, Multicenter Trial to Assess an Everolimus-Eluting Coronary Stent System [PROMUS Element] for the Treatment of up to Two De Novo Coronary Artery Lesions) trial. J. Am. Coll. Cardiol. 57, 1700–1708 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Kereiakes, D. J. et al. Clinical and angiographic outcomes after treatment of de novo coronary stenoses with a novel platinum chromium thin-strut stent: primary results of the PERSEUS (Prospective Evaluation in a Randomized Trial of the Safety and Efficacy of the Use of the TAXUS Element Paclitaxel-Eluting Coronary Stent System) trial. J. Am. Coll. Cardiol. 56, 264–271 (2010).

    Article  PubMed  Google Scholar 

  70. Ormiston, J. A., Lefèvre, T., Grube, E., Allocco, D. & Dawkins, K. D. First human use of the Taxus Petal Paclitaxel-eluting bifurcation stent. EuroIntervention 6, 46–53 (2010).

    Article  PubMed  Google Scholar 

  71. Serruys, P. W. et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373, 897–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Erbel, R. et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicenter trial. Lancet 369, 1869–1875 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Onuma, Y. et al. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention 6, 447–453 (2010).

    Article  PubMed  Google Scholar 

  74. Tanimoto, S. et al. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter. Cardiovasc. Interv. 70, 515–523 (2007).

    Article  PubMed  Google Scholar 

  75. Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 122, 2301–2312 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Gomez-Lara, J. et al. A comparison of the conformability of everolimus-eluting bioresorbable vascular scaffolds to metal platform coronary stents. JACC Cardiovasc. Interv. 3, 1190–1198 (2010).

    Article  PubMed  Google Scholar 

  77. Martinez, A. W. & Chaikof, E. L. Microfabrication and nanotechnology in stent design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 256–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brito, L. & Amiji, M. Nanoparticulate carriers for the treatment of coronary restenosis. Int. J. Nanomedicine 2, 143–161 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bhargava, B. et al. A novel paclitaxel-eluting porous carbon–carbon nanoparticle coated, nonpolymeric cobalt–chromium stent: evaluation in a porcine model. Catheter. Cardiovasc. Interv. 67, 698–702 (2006).

    Article  PubMed  Google Scholar 

  80. Luderer, F. et al. Biodegradable sirolimus-loaded poly(lactide) nanoparticles as drug delivery system for the prevention of in-stent restenosis in coronary stent application. J. Biomater. Appl. 25, 851–875 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Chorny, M. et al. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl. Acad. Sci. U. S. A. 107, 8346–8351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brito, L. A., Chandrasekhar, S., Little, S. R. & Amiji, M. M. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed. Eng. Online 9, 56 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Takemoto, Y. et al. Human placental ectonucleoside triphosphate diphosphohydrolase gene transfer via gelatin-coated stents prevents in-stent thrombosis. Arterioscler. Thromb. Vasc. Biol. 29, 857–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Lai, Y. M. et al. Synthetic pyrrole-imidazole polyamide inhibits expression of the human transforming growth factor-beta1 gene. J. Pharmacol. Exp. Ther. 315, 571–575 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Yao, E. H. et al. A pyrrole-imidazole polyamide targeting transforming growth factor-beta1 inhibits restenosis and preserves endothelialization in the injured artery. Cardiovasc. Res. 81, 797–804 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Yao, E. H. et al. Novel gene silencer pyrrole-imidazole polyamide targeting lectin-like oxidized low-density lipoprotein receptor-1 attenuates restenosis of the artery after injury. Hypertension 52, 86–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Bonta, P. I. et al. Nuclear receptor Nurr1 is expressed in and is associated with human restenosis and inhibits vascular lesion formation in mice involving inhibition of smooth muscle cell proliferation and inflammation. Circulation 121, 2023–2032 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Pires, N. M. et al. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation 115, 493–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. O'Sullivan, J. F., Martin K. & Caplice, N. M. Microribonucleic acids for prevention of plaque rupture and in-stent restenosis: “a finger in the dam”. J. Am. Coll. Cardiol. 57, 383–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Versaci, F. et al. Immunosuppressive Therapy for the Prevention of Restenosis after Coronary Artery Stent Implantation (IMPRESS Study). J. Am. Coll. Cardiol. 40, 1935–1942 (2002).

    Article  PubMed  Google Scholar 

  92. US National Institutes of Health. Cortisone or drug-eluting stents (DES) as compared to bare-metal stents (BMS) to eliminate restenosis. ClinicalTrails.gov [online], (2011).

  93. Pesarini, G. et al. Cytokines release inhibition from activated monocytes, and reduction of in-stent neointimal growth in humans. Atherosclerosis 211, 242–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Gallo, R. et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation 99, 2164–2170 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Hausleiter, J. et al. Randomized, double-blind, placebo-controlled trial of oral sirolimus for restenosis prevention in patients with in-stent restenosis: the Oral Sirolimus to Inhibit Recurrent In-stent Stenosis (OSIRIS) trial. Circulation 110, 790–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Rodriguez, A. E. et al. Percutaneous coronary intervention with oral sirolimus and bare metal stents has comparable safety and efficacy to treatment with drug eluting stents, but with significant cost saving: long-term follow-up results from the randomised, controlled ORAR III (Oral Rapamycin in ARgentina) study. EuroIntervention 5, 255–264 (2009).

    Article  PubMed  Google Scholar 

  97. Kufner, S. et al. Long-term risk of adverse outcomes and new malignancies in patients treated with oral sirolimus for prevention of restenosis. JACC Cardiovasc. Interv. 2, 1142–1148 (2009).

    Article  PubMed  Google Scholar 

  98. Kubota, Y. et al. Pharmacologic treatment of intimal hyperplasia after metallic stent placement in the peripheral arteries. An experimental study. Invest. Radiol. 30, 532–537 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Douglas, J. S. Jr. et al. Coronary stent restenosis in patients treated with cilostazol. Circulation 112, 2826–2832 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, S. W. et al. Drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with diabetes mellitus the DECLARE-DIABETES Trial (A Randomized Comparison of Triple Antiplatelet Therapy with Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation in Diabetic Patients). J. Am. Coll. Cardiol. 51, 1181–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Jennings, D. L. & Kalus, J. S. Addition of cilostazol to aspirin and a thienopyridine for prevention of restenosis after coronary artery stenting: a meta-analysis. J. Clin. Pharmacol. 50, 415–421 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Kamal, A. K., Naqvi, I., Husain, M. R. & Khealani, B. A. Cilostazol versus aspirin for secondary prevention of vascular events after stroke of arterial origin. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD008076. doi:10.1002/14651858.CD008076.pub2 (2011).

  103. Hsueh, W. A. & Law, R. E. PPARgamma and atherosclerosis: effects on cell growth and movement. Arterioscler. Thromb. Vasc. Biol. 21, 1891–1895 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Rosmarakis, E. S. & Falagas, M. E. Effect of thiazolidinedione therapy on restenosis after coronary stent implantation: a meta-analysis of randomized controlled trials. Am. Heart J. 154, 144–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Takagi, T. et al. A prospective, multicenter, randomized trial to assess efficacy of pioglitazone on in-stent neointimal suppression in type 2 diabetes: POPPS (Prevention of In-Stent Neointimal Proliferation by Pioglitazone Study). JACC Cardiovasc. Interv. 2, 524–531 (2009).

    Article  PubMed  Google Scholar 

  106. Rathore, S. et al. A comparison of clinical presentations, angiographic patterns and outcomes of in-stent restenosis between bare metal stents and drug eluting stents. EuroIntervention 5, 841–846 (2010).

    Article  PubMed  Google Scholar 

  107. Dangas, G. D. et al. In-stent restenosis in the drug-eluting stent era. J. Am. Coll. Cardiol. 56, 1897–1907 (2010).

    Article  PubMed  Google Scholar 

  108. Nakazawa, G. et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J. Am. Coll. Cardiol. 57, 1314–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Singh, I. M. et al. Clinical outcomes of drug-eluting versus bare-metal in-stent restenosis. Catheter. Cardiovasc. Interv. 75, 338–342 (2010).

    PubMed  Google Scholar 

  110. Mehran, R. et al. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation 100, 1872–1878 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Cosgrave, J. et al. Drug-eluting stent restenosis the pattern predicts the outcome. J. Am. Coll. Cardiol. 47, 2399–2404 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Solinas, E. et al. Angiographic patterns of drug-eluting stent restenosis and one-year outcomes after treatment with repeated percutaneous coronary intervention. Am. J. Cardiol. 102, 311–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Leon, M. B. et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N. Engl. J. Med. 344, 250–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Waksman, R., Raizner, A. E., Yeung, A. C., Lansky, A. J. & Vandertie, L. Use of localised intracoronary beta radiation in treatment of in-stent restenosis: the INHIBIT randomised controlled trial. Lancet 359, 551–557 (2002).

    Article  PubMed  Google Scholar 

  115. Holmes, D. R. Jr. et al. 5-year final results of the SISR (Sirolimus-Eluting Stents versus Vascular Brachytherapy for In-Stent Restenosis) trial [abstract 2904–9]. J. Am. Coll. Cardiol. 57 (Suppl. S), E1641 (2011).

    Article  Google Scholar 

  116. Mauri, L. et al. Cutting balloon angioplasty for the prevention of restenosis: results of the Cutting Balloon Global Randomized Trial. Am. J. Cardiol. 90, 1079–1083 (2002).

    Article  PubMed  Google Scholar 

  117. Unterberg C. et al. Cutting balloon coronary angioplasty--initial clinical experience. Clin. Cardiol. 16, 660–664 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Ozaki, Y. et al. A quantitative coronary angiography-matched comparison between a prospective randomised multicenter cutting balloon angioplasty and bare metal stent trial (REDUCE III) and the Rapamycin-Eluting Stent Evaluation At Rotterdam Cardiology Hospital (RESEARCH) study. EuroIntervention 6, 400–406 (2010).

    Article  PubMed  Google Scholar 

  119. Park, S. J. et al. Comparison of plain balloon and cutting balloon angioplasty for the treatment of restenosis with drug-eluting stents vs bare metal stents. Circ. J. 74, 1837–1845 (2010).

    Article  PubMed  Google Scholar 

  120. Scheller, B. et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N. Engl. J. Med. 355, 2113–2124 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Unverdorben, M. et al. Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 119, 2986–2994 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Joner, M. et al. Comparative assessment of drug-eluting balloons in an advanced porcine model of coronary restenosis. Thromb. Hemost. 105, 864–872 (2011).

    Article  CAS  Google Scholar 

  123. Hehrlein, C. et al. International first in man trial with a novel drug-eluting balloon in patients presenting with in-stent restenosis (PEPPER) [abstract 2904–8]. J. Am. Coll. Cardiol. 57 (Suppl. S) E1640 (2011).

    Article  Google Scholar 

  124. Toelg, R. Comparison of bare metal and DES restenosis after treatment with a novel drug-eluting balloon - a subgroup analysis of the PEPPER first-in-man trial [abstract 267]. Eurointervention 7 (Suppl. M) (2011).

  125. Wijns, W. et al. Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 31, 2501–2555 (2010).

    Article  PubMed  Google Scholar 

  126. US National Institutes of Health. Treatment of drug-eluting stent (DES) in-stent restenosis with SeQuent® Please paclitaxel eluting percutaneous transluminal coronary angioplasty (PTCA) catheter. ClinicalTrials.gov [online], (2011).

  127. Alfonso, F. et al. Long-term clinical benefit of sirolimus-eluting stents in patients with in-stent restenosis results of the RIBS-II (Restenosis Intra-stent: Balloon angioplasty vs. elective sirolimus-eluting Stenting) study. J. Am. Coll. Cardiol. 52, 1621–1627 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Holmes, D. R. Jr. et al. Sirolimus-eluting stents vs vascular brachytherapy for in-stent restenosis within bare-metal stents: the SISR randomized trial. JAMA 295, 1264–1273 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Stone, G. W. et al. Paclitaxel-eluting stents vs vascular brachytherapy for in-stent restenosis within bare-metal stents: the TAXUS V ISR randomized trial. JAMA 295, 1253–1263 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Singh, I. M. et al. Drug-eluting stents versus bare-metal stents for treatment of bare-metal in-stent restenosis. Catheter. Cardiovasc. Interv. 76, 257–262 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mehilli, J. et al. Randomized trial of paclitaxel- versus sirolimus-eluting stents for treatment of coronary restenosis in sirolimus-eluting stents: the ISAR-DESIRE 2 (Intracoronary Stenting and Angiographic Results: Drug Eluting Stents for In-Stent Restenosis 2) study. J. Am. Coll. Cardiol. 55, 2710–2716 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Huang, S., Bjornsti, M. A. & Houghton, P. J. Rapamycins: mechanism of action and cellular resistance. Cancer Biol. Ther. 2, 222–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Orr, G. A., Verdier-Pinard, P., McDaid, H. & Horwitz, S. B. Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280–7295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cosgrave, J. et al. Repeated drug-eluting stent implantation for drug-eluting stent restenosis: the same or a different stent. Am. Heart J. 153, 354–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Costa, M. A. Treatment of drug-eluting stent restenosis. Am. Heart J. 153, 447–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Aminian, A., Kabir, T. & Eeckhout, E. Treatment of drug-eluting stent restenosis: an emerging challenge. Catheter. Cardiovasc. Interv. 74, 108–116 (2009).

    Article  PubMed  Google Scholar 

  137. Fishbein, I. et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc. Natl Acad. Sci. U. S. A. 103, 159–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Sharif, F. et al. Gene-eluting stents: adenovirus-mediated delivery of eNOS to the blood vessel wall accelerates re-endothelialization and inhibits restenosis. Mol. Ther. 16, 1674–1680 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Johnson, T. W. et al. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler. Thromb. Vasc. Biol. 25, 754–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Egashira, K. et al. Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates in-stent stenosis in rabbits and monkeys. Arterioscler. Thromb. Vasc. Biol. 27, 2563–2568 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Walter, D. H. et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 110, 36–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Brasen, J. H. et al. Extracellular superoxide dismutase accelerates endothelial recovery and inhibits in-stent restenosis in stented atherosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J. Am. Coll. Cardiol. 50, 2249–2253 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J. W. Jukema has received funding from the European Union's Seventh Framework Program (FP7/2007-2013) under grant agreement n° HEALTH-F2-2009-223,004 and he is supported by grants from the Interuniversity Cardiology Institute of the Netherlands (ICIN) and the Durrer Center for Cardiogenetic Research both Institutes of the Netherlands Royal Academy of Arts and Sciences (KNAW), the Netherlands Heart Foundation, the Center for Medical Systems Biology (CMSB), a center of excellence approved by the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (NWO), the Netherlands Consortium for Healthy Ageing (NCHA). T. A. N. Ahmed would like to thank the Egyptian Ministry of Higher Education and Asyut University for financially supporting him during his research and clinical fellowship in the Netherlands. P. H. A. Quax is an established investigator of the Netherlands Heart Foundation (M93-001). The funders had no role in the preparation of, or decision to publish, the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J. W. Jukema, T. A. N. Ahmed and J. J. W. Verschuren researched data for and wrote the article. All authors contributed to the discussion of content. J. W. Jukema, J. J. W. Verschuren and P. H. A. Quax reviewed/edited the article before submission. J. W. Jukema and T. A. N. Ahmed contributed equally to this paper.

Corresponding author

Correspondence to J. Wouter Jukema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jukema, J., Ahmed, T., Verschuren, J. et al. Restenosis after PCI. Part 2: prevention and therapy. Nat Rev Cardiol 9, 79–90 (2012). https://doi.org/10.1038/nrcardio.2011.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing