Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology of thoracic aortic dissection

Abstract

Thoracic aortic dissection (TAD) is estimated to occur at a rate of 3–4 cases per 100,000 persons per year and is associated with a high mortality. Reported rates are probably underestimates of the true incidence of TAD because of difficulties in diagnosis. The incidence of TAD appears to have been increasing over time. TAD is most common in men and older individuals. Aortic dilatation is a well-established risk factor for TAD but is not a prerequisite; most ascending aortic dissections occur when aortic diameter is <5.5 cm. Although atherosclerosis and typical cardiovascular risk factors, such as hypertension and smoking, are associated with TAD, evidence supporting their direct causal role is lacking. Notably, diabetes mellitus is remarkably uncommon in patients with TAD. Other risk factors for TAD include inflammatory diseases, iatrogenic aortic injury, and drug use. Congenital cardiovascular defects, such as bicuspid aortic valve, and certain genetic syndromes, such as Marfan syndrome, are the genetic factors most commonly associated with TAD. Specific nonsyndromic genetic mutations in families and single nucleotide polymorphisms have also been identified as possible risk factors for TAD.

Key Points

  • The incidence of thoracic aortic dissection is probably underestimated (3–4 cases per 100,000 persons per year) and seems to be increasing, in part because of improvements in diagnostic imaging

  • Thoracic aortic dissection is a major cause of mortality in the general population, with rupture being the most common cause of death

  • Although aortic dilatation is a well-established risk factor for thoracic aortic dissection, most ascending aortic dissections occur when aortic diameter is <5.5 cm

  • Male sex and older age are risk factors for thoracic aortic dissection

  • Although atherosclerosis and typical cardiovascular risk factors are associated with thoracic aortic dissection, evidence supporting their direct causal role is lacking, and diabetes is remarkably uncommon in these patients

  • Congenital cardiovascular defects, such as bicuspid aortic valve, and genetic syndromes, such as Marfan syndrome, are the genetic factors most commonly associated with thoracic aortic dissection

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The anatomic extent of thoracic aortic dissection is classified according to the DeBakey system and the Stanford system.
Figure 2: Longitudinal sections of the aorta illustrating variants of acute aortic syndrome.

Similar content being viewed by others

References

  1. Hagan, P. G. et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 283, 897–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Pape, L. A. et al. Aortic diameter ≥5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation 116, 1120–1127 (2007).

    Article  PubMed  Google Scholar 

  3. Olsson, C., Thelin, S., Ståhle, E., Ekbom, A. & Granath, F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation 114, 2611–2618 (2006).

    Article  PubMed  Google Scholar 

  4. Elefteriades, J. A., Barrett, P. W. & Kopf, G. S. Litigation in nontraumatic aortic diseases—a tempest in the malpractice maelstrom. Cardiology 109, 263–272 (2008).

    Article  PubMed  Google Scholar 

  5. Clouse, W. D. et al. Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin. Proc. 79, 176–180 (2004).

    Article  PubMed  Google Scholar 

  6. Mészáros, I. et al. Epidemiology and clinicopathology of aortic dissection. Chest 117, 1271–1278 (2000).

    Article  PubMed  Google Scholar 

  7. Sato, F. et al. Newly diagnosed acute aortic dissection: characteristics, treatment modifications, and outcomes. Int. Heart J. 46, 1083–1098 (2005).

    Article  PubMed  Google Scholar 

  8. Yu, H. Y., Chen, Y. S., Huang, S. C., Wang, S. S. & Lin, F. Y. Late outcome of patients with aortic dissection: study of a national database. Eur. J. Cardiothorac. Surg. 25, 683–690 (2004).

    Article  PubMed  Google Scholar 

  9. Nienaber, C. A. et al. Gender-related differences in acute aortic dissection. Circulation 109, 3014–3021 (2004).

    Article  PubMed  Google Scholar 

  10. Hirst, A. E. Jr, Johns, V. J. Jr & Kime, S. W. Jr. Dissecting aneurysm of the aorta: a review of 505 cases. Medicine (Baltimore) 37, 217–279 (1958).

    Article  Google Scholar 

  11. Tsai, T. T. et al. Long-term survival in patients presenting with type A acute aortic dissection: insights from the International Registry of Acute Aortic Dissection (IRAD). Circulation 114 (1 Suppl.), I350–I356 (2006).

    PubMed  Google Scholar 

  12. Trimarchi, S. et al. Role of age in acute type A aortic dissection outcome: report from the International Registry of Acute Aortic Dissection (IRAD). J. Thorac. Cardiovasc. Surg. 140, 784–789 (2010).

    Article  PubMed  Google Scholar 

  13. Olsson, C., Eriksson, N., Ståhle, E. & Thelin, S. Surgical and long-term mortality in 2,634 consecutive patients operated on the proximal thoracic aorta. Eur. J. Cardiothorac. Surg. 31, 963–969 (2007).

    Article  PubMed  Google Scholar 

  14. Tsai, T. T. et al. Long-term survival in patients presenting with type B acute aortic dissection: insights from the International Registry of Acute Aortic Dissection. Circulation 114, 2226–2231 (2006).

    Article  PubMed  Google Scholar 

  15. Estrera, A. L. et al. Outcomes of medical management of acute type B aortic dissection. Circulation 114, I384–I389 (2006).

    Article  PubMed  Google Scholar 

  16. Garbade, J. et al. Outcome of patients suffering from acute type B aortic dissection: a retrospective single-centre analysis of 135 consecutive patients. Eur. J. Cardiothorac. Surg. 38, 285–292 (2010).

    Article  PubMed  Google Scholar 

  17. Shimokawa, T. et al. Outcome of surgical treatment in patients with acute type B aortic dissection. Ann. Thorac. Surg. 86, 103–107 (2008).

    Article  PubMed  Google Scholar 

  18. Evangelista, A. et al. Acute intramural hematoma of the aorta: a mystery in evolution. Circulation 111, 1063–1070 (2005).

    Article  PubMed  Google Scholar 

  19. Kan, C. B., Chang, R. Y. & Chang, J. P. Optimal initial treatment and clinical outcome of type A aortic intramural hematoma: a clinical review. Eur. J. Cardiothorac. Surg. 33, 1002–1006 (2008).

    Article  PubMed  Google Scholar 

  20. Cho, K. R. et al. Penetrating atherosclerotic ulcer of the descending thoracic aorta and arch. J. Thorac. Cardiovasc. Surg. 127, 1393–1399 (2004).

    Article  PubMed  Google Scholar 

  21. Tittle, S. L. et al. Midterm follow-up of penetrating ulcer and intramural hematoma of the aorta. J. Thorac. Cardiovasc. Surg. 123, 1051–1059 (2002).

    Article  PubMed  Google Scholar 

  22. Quint, L. E. et al. Ulcerlike lesions of the aorta: imaging features and natural history. Radiology 218, 719–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Brinster, D. R. et al. Are penetrating aortic ulcers best treated using an endovascular approach? Ann. Thorac. Surg. 82, 1688–1691 (2006).

    Article  PubMed  Google Scholar 

  24. Maraj, R., Rerkpattanapipat, P., Jacobs, L. E., Makornwattana, P. & Kotler, M. N. Meta-analysis of 143 reported cases of aortic intramural hematoma. Am. J. Cardiol. 86, 664–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, I. H. et al. Is old age a contraindication for surgical treatment in acute aortic dissection? A demographic study of national database registry in Taiwan. Card. Surg. 23, 133–139 (2008).

    Article  Google Scholar 

  26. Januzzi, J. L. et al. Characterizing the young patient with aortic dissection: results from the International Registry of Aortic Dissection (IRAD). J. Am. Coll. Cardiol. 43, 665–669 (2004).

    Article  PubMed  Google Scholar 

  27. Mehta, R. H. et al. Acute type B aortic dissection in elderly patients: clinical features, outcomes, and simple risk stratification rule. Ann. Thorac. Surg. 77, 1622–1628 (2004).

    Article  PubMed  Google Scholar 

  28. Kitchen, N. D. Racial distribution of aneurysms in Zimbabwe. J. R. Soc. Med. 82, 136–138 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pelzel, J. M., Braverman, A. C., Hirsch, A. T. & Harris, K. M. International heterogeneity in diagnostic frequency and clinical outcomes of ascending aortic intramural hematoma. J. Am. Soc. Echocardiogr. 20, 1260–1268 (2007).

    Article  PubMed  Google Scholar 

  30. Elefteriades, J. A. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann. Thorac. Surg. 74, S1877–S1880 (2002).

    Article  PubMed  Google Scholar 

  31. Davies, R. R. et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg. 81, 169–177 (2006).

    Article  PubMed  Google Scholar 

  32. Parish, L. M. et al. Aortic size in acute type A dissection: implications for preventive ascending aortic replacement. Eur. J. Cardiothorac. Surg. 35, 941–946 (2009).

    Article  PubMed  Google Scholar 

  33. Barbetseas, J. et al. Atherosclerosis of the aorta in patients with acute thoracic aortic dissection. Circ. J. 72, 1773–1776 (2008).

    Article  PubMed  Google Scholar 

  34. Coady, M. A., Rizzo, J. A. & Elefteriades, J. A. Pathologic variants of thoracic aortic dissections: penetrating atherosclerotic ulcers and intramural hematomas. Cardiol. Clin. 17, 637–657 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Stanson, A. W. et al. Penetrating atherosclerotic ulcers of the thoracic aorta: natural history and clinicopathologic correlations. Ann. Vasc. Surg. 1, 15–23 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Achneck, H. et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest 128, 1580–1586 (2005).

    Article  PubMed  Google Scholar 

  38. Ehrlich, M. P. et al. Results of immediate surgical treatment of all acute type A dissections. Circulation 102 (Suppl. 3), III248–III252 (2000).

    CAS  PubMed  Google Scholar 

  39. Stevens, L. M. et al. Surgical management and long-term outcomes for acute ascending aortic dissection. J. Thorac. Cardiovasc. Surg. 138, 1349–1357 (2009).

    Article  PubMed  Google Scholar 

  40. Sueyoshi, E., Sakamoto, I., Fukuda, M., Hayashi, K. & Imada, T. Long-term outcome of type B aortic intramural hematoma: comparison with classic aortic dissection treated by the same therapeutic strategy. Ann. Thorac. Surg. 78, 2112–2117 (2004).

    Article  PubMed  Google Scholar 

  41. Clouse, W. D. et al. Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA 280, 1926–1929 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Schermerhorn, M. L. et al. Population-based outcomes of open descending thoracic aortic aneurysm repair. J. Vasc. Surg. 48, 821–827 (2008).

    Article  PubMed  Google Scholar 

  43. Juvonen, T. et al. Risk factors for rupture of chronic type B dissections. J. Thorac. Cardiovasc. Surg. 117, 776–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Takeuchi, T. et al. A case–control study found that low albumin and smoking were associated with aortic dissection. J. Clin. Epidemiol. 57, 386–391 (2004).

    Article  PubMed  Google Scholar 

  45. Chen, X. F. et al. Diabetes mellitus: is it protective against aortic root dilatation? Cardiology 112, 138–143 (2009).

    Article  PubMed  Google Scholar 

  46. Pacini, D. et al. Incidence, etiology, histologic findings, and course of thoracic inflammatory aortopathies. Ann. Thorac. Surg. 86, 1518–1523 (2008).

    Article  PubMed  Google Scholar 

  47. Homme, J. L. et al. Surgical pathology of the ascending aorta: a clinicopathologic study of 513 cases. Am. J. Surg. Pathol. 30, 1159–1168 (2006).

    Article  PubMed  Google Scholar 

  48. Miller, D. V. et al. Surgical pathology of noninfectious ascending aortitis: a study of 45 cases with emphasis on an isolated variant. Am. J. Surg. Pathol. 30, 1150–1158 (2006).

    Article  PubMed  Google Scholar 

  49. Gonzalez-Gay, M. A. et al. Aortic aneurysm and dissection in patients with biopsy-proven giant cell arteritis from northwestern Spain: a population-based study. Medicine (Baltimore) 83, 335–341 (2004).

    Article  Google Scholar 

  50. Nuenninghoff, D. M., Hunder, G. G., Christianson, T. J., McClelland, R. L. & Matteson, E. L. Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum. 48, 3522–3531 (2003).

    Article  PubMed  Google Scholar 

  51. Evans, J. M., O'Fallon, W. M. & Hunder, G. G. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis: a population-based study. Ann. Intern. Med. 122, 502–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Oskoui, R. & Lindsay, J. Jr. Aortic dissection in women &lt;40 years of age and the unimportance of pregnancy. Am. J. Cardiol. 73, 821–823 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Nasiell, J. & Lindqvist, P. G. Aortic dissection in pregnancy: the incidence of a life-threatening disease. Eur. J. Obstet. Gynecol. Reprod. Biol. 149, 120–121 (2010).

    Article  PubMed  Google Scholar 

  54. Pacini, L. et al. Maternal complication of pregnancy in Marfan syndrome. Int. J. Cardiol. 136, 156–161 (2009).

    Article  PubMed  Google Scholar 

  55. Lind, J. & Wallenburg, H. C. The Marfan syndrome and pregnancy: a retrospective study in a Dutch population. Eur. J. Obstet. Gynecol. Reprod. Biol. 98, 28–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Immer, F. F. et al. Aortic dissection in pregnancy: analysis of risk factors and outcome. Ann. Thorac. Surg. 76, 309–314 (2003).

    Article  PubMed  Google Scholar 

  57. The Task Force on the Management of Cardiovascular Diseases During Pregnancy of the European Society of Cardiology. Expert consensus document on management of cardiovascular diseases during pregnancy. Eur. Heart J. 24, 761–781 (2003).

  58. Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 355, 788–798 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Beauchesne, L. M., Connolly, H. M., Ammash, N. M. & Warnes, C. A. Coarctation of the aorta: outcome of pregnancy. J. Am. Coll. Cardiol. 38, 1728–1733 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Cabanes, L. et al. Turner syndrome and pregnancy: clinical practice. Recommendations for the management of patients with Turner syndrome before and during pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 152, 18–24 (2010).

    Article  PubMed  Google Scholar 

  61. Goland, S., Barakat, M., Khatri, N. & Elkayam, U. Pregnancy in Marfan syndrome: maternal and fetal risk and recommendations for patient assessment and management. Cardiol. Rev. 17, 253–262 (2009).

    Article  PubMed  Google Scholar 

  62. Zeebregts, C. J., Schepens, M. A., Hameeteman, T. M., Morshuis, W. J. & de la Rivière, A. B. Acute aortic dissection complicating pregnancy. Ann. Thorac. Surg. 64, 1345–1348 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Richens, D., Kotidis, K., Neale, M., Oakley, C. & Fails, A. Rupture of the aorta following road traffic accidents in the United Kingdom 1992–1999: the results of the co-operative crash injury study. Eur. J. Cardiothorac. Surg. 23, 143–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Bertrand, S. et al. Traumatic rupture of thoracic aorta in real-world motor vehicle crashes. Traffic Inj. Prev. 9, 153–161 (2008).

    Article  PubMed  Google Scholar 

  65. Rogers, F. B., Osler, T. M. & Shackford, S. R. Aortic dissection after trauma: case report and review of the literature. J. Trauma 41, 906–908 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Bashar, A. H. et al. Stanford type A aortic dissection after blunt chest trauma: case report with a reflection on the mechanism of injury. J. Trauma 52, 380–381 (2002).

    PubMed  Google Scholar 

  67. Magishi, K., Izumi, Y., Ishikawa, N. & Kimura, F. Stanford type A acute aortic dissection caused by blunt trauma in a patient with situs inversus. Ann. Thorac. Surg. 81, 2294–2296 (2006).

    Article  PubMed  Google Scholar 

  68. Mandila, C., Saranteas, T., Kalogeromitros, A., Kostopanagiotou, G. & Karabinis, A. Transesophageal echocardiography in the identification of subtle aortic dissection in a trauma patient. J. Cardiothorac. Vasc. Anesth. 24, 900–901 (2010).

    Article  PubMed  Google Scholar 

  69. Mimasaka, S. et al. A case of aortic dissection caused by blunt chest trauma. Forensic Sci. Int. 132, 5–8 (2003).

    Article  PubMed  Google Scholar 

  70. Munshi, I. A. Aortic dissection after blunt trauma. J. Trauma 55, 1181 (2003).

    Article  PubMed  Google Scholar 

  71. Park, J. S., Lim, S. H. & Shin, J. H. Unusual aortic dissection mimicking penetrating atherosclerotic ulcer after blunt chest trauma. J. Cardiovasc. Ultrasound 17, 110–111 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Januzzi, J. L. et al. Iatrogenic aortic dissection. Am. J. Cardiol. 89, 623–626 (2002).

    Article  PubMed  Google Scholar 

  73. Fleck, T. et al. Intraoperative iatrogenic type A aortic dissection and perioperative outcome. Interact. Cardiovasc. Thorac. Surg. 5, 11–14 (2006).

    Article  PubMed  Google Scholar 

  74. Hwang, H. Y., Jeong, D. S., Kim, K. H., Kim, K. B. & Ahn, H. Iatrogenic type A aortic dissection during cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 10, 896–899 (2010).

    Article  PubMed  Google Scholar 

  75. Jonker, F. H. et al. Management of type A aortic dissections: a meta-analysis of the literature. Ann. Thorac. Surg. 89, 2061–2066 (2010).

    Article  PubMed  Google Scholar 

  76. Eggebrecht, H. et al. Retrograde ascending aortic dissection during or after thoracic aortic stent graft placement: insight from the European registry on endovascular aortic repair complications. Circulation 120 (11 Suppl.), S276–S281 (2009).

    PubMed  Google Scholar 

  77. Daniel, J. C. et al. Acute aortic dissection associated with use of cocaine. J. Vasc. Surg. 46, 427–433 (2007).

    Article  PubMed  Google Scholar 

  78. Hsue, P. Y., Salinas, C. L., Bolger, A. F., Benowitz, N. L. & Waters, D. D. Acute aortic dissection related to crack cocaine. Circulation 105, 1592–1595 (2002).

    Article  PubMed  Google Scholar 

  79. Singh, S. et al. Cocaine-related acute aortic dissection: patient demographics and clinical outcomes. Can. J. Cardiol. 23, 1131–1134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Eagle, K. A., Isselbacher, E. M. & DeSanctis, R. W. Cocaine-related aortic dissection in perspective. Circulation 105, 1529–1530 (2002).

    Article  PubMed  Google Scholar 

  81. Westover, A. N. & Nakonezny, P. A. Aortic dissection in young adults who abuse amphetamines. Am. Heart J. 160, 315–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nachtnebel, A., Stöllberger, C., Ehrlich, M. & Finsterer, J. Aortic dissection after sildenafil-induced erection. South Med. J. 99, 1151–1152 (2006).

    Article  PubMed  Google Scholar 

  83. Tiryakioglu, S. K., Tiryakioglu, O., Turan, T. & Kumbay, E. Aortic dissection due to sildenafil abuse. Interact. Cardiovasc. Thorac. Surg. 9, 141–143 (2009).

    Article  PubMed  Google Scholar 

  84. Cooke, C. E., Wong, W. & Lee, H. Utilization and cost of sildenafil in a large managed care organization with a quantity limit on sildenafil. J. Manag. Care Pharm. 11, 674–680 (2005).

    Article  PubMed  Google Scholar 

  85. Oliver, J. M. et al. Risk factors for aortic complications in adults with coarctation of the aorta. J. Am. Coll. Cardiol. 44, 1641–1647 (2004).

    Article  PubMed  Google Scholar 

  86. Glancy, D. L., Wegmann, M. & Dhurandhar, R. W. Aortic dissection and patent ductus arteriosus in three generations. Am. J. Cardiol. 87, 813–815, A819 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Khau Van Kien, P. et al. Familial thoracic aortic aneurysm/dissection with patent ductus arteriosus: genetic arguments for a particular pathophysiological entity. Eur. J. Hum. Genet. 12, 173–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Turkvatan, A., Buyukbayraktar, F. G., Olcer, T. & Cumhur, T. Multidetector computed tomographic angiography of aberrant subclavian arteries. Vasc. Med. 14, 5–11 (2009).

    Article  PubMed  Google Scholar 

  89. Ando, M., Okita, Y., Morota, T. & Takamoto, S. Thoracic aortic aneurysm associated with congenital bicuspid aortic valve. Cardiovasc. Surg. 6, 629–634 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Davies, R. R. et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann. Thorac. Surg. 83, 1338–1344 (2007).

    Article  PubMed  Google Scholar 

  91. Tzemos, N. et al. Outcomes in adults with bicuspid aortic valves. JAMA 300, 1317–1325 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. von Kodolitsch, Y. et al. Predictors of aneurysmal formation after surgical correction of aortic coarctation. J. Am. Coll. Cardiol. 39, 617–624 (2002).

    Article  PubMed  Google Scholar 

  93. Oliver, J. M. et al. Risk of aortic root or ascending aorta complications in patients with bicuspid aortic valve with and without coarctation of the aorta. Am. J. Cardiol. 104, 1001–1006 (2009).

    Article  PubMed  Google Scholar 

  94. Milewicz, D. M. et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9, 283–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Loeys, B. L. et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 47, 476–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Detter, C. et al. Long-term prognosis of surgically-treated aortic aneurysms and dissections in patients with and without Marfan syndrome. Eur. J. Cardiothorac. Surg. 13, 416–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. LeMaire, S. A. et al. Spectrum of aortic operations in 300 patients with confirmed or suspected Marfan syndrome. Ann. Thorac. Surg. 81, 2063–2078 (2006).

    Article  PubMed  Google Scholar 

  98. Januzzi, J. L. et al. Comparison of aortic dissection in patients with and without Marfan's syndrome (results from the International Registry of Aortic Dissection). Am. J. Cardiol. 94, 400–402 (2004).

    Article  PubMed  Google Scholar 

  99. Détaint, D. et al. Cardiovascular manifestations in men and women carrying a FBN1 mutation. Eur. Heart J. 31, 2223–2229 (2010).

    Article  PubMed  CAS  Google Scholar 

  100. Oderich, G. S. et al. The spectrum, management and clinical outcome of Ehlers-Danlos syndrome type IV: a 30-year experience. J. Vasc. Surg. 42, 98–106 (2005).

    Article  PubMed  Google Scholar 

  101. Pepin, M., Schwarze, U., Superti-Furga, A. & Byers, P. H. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N. Engl. J. Med. 342, 673–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Gravholt, C. H. et al. Clinical and epidemiological description of aortic dissection in Turner's syndrome. Cardiol. Young 16, 430–436 (2006).

    Article  PubMed  Google Scholar 

  103. Matura, L. A., Ho, V. B., Rosing, D. R. & Bondy, C. A. Aortic dilatation and dissection in Turner syndrome. Circulation 116, 1663–1670 (2007).

    Article  PubMed  Google Scholar 

  104. Carlson, M. & Silberbach, M. Dissection of the aorta in Turner syndrome: two cases and review of 85 cases in the literature. J. Med. Genet. 44, 745–749 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Albornoz, G. et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann. Thorac. Surg. 82, 1400–1405 (2006).

    Article  PubMed  Google Scholar 

  106. Hemminki, K., Li, X., Johansson, S. E., Sundquist, K. & Sundquist, J. Familial risks of aortic aneurysms among siblings in a nationwide Swedish study. Genet. Med. 8, 43–49 (2006).

    Article  PubMed  Google Scholar 

  107. Biddinger, A., Rocklin, M., Coselli, J. & Milewicz, D. M. Familial thoracic aortic dilatations and dissections: a case control study. J. Vasc. Surg. 25, 506–511 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Coady, M. A. et al. Familial patterns of thoracic aortic aneurysms. Arch. Surg. 134, 361–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Milewicz, D. M. et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am. J. Cardiol. 82, 474–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, Y. et al. VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection). Circulation 113, 1615–1621 (2006).

    Article  PubMed  Google Scholar 

  111. Kalay, N. et al. The deletion polymorphism of the angiotensin-converting enzyme gene is associated with acute aortic dissection. Tohoku J. Exp. Med. 219, 33–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, L. et al. A single nucleotide polymorphism in the matrix metalloproteinase 9 gene (–8202A/G) is associated with thoracic aortic aneurysms and thoracic aortic dissection. J. Thorac. Cardiovasc. Surg. 131, 1045–1052 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kato, K. et al. Assessment of genetic risk factors for thoracic aortic aneurysm in hypertensive patients. Am. J. Hypertens. 21, 1023–1027 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Lesauskaite, V. et al. Matrix metalloproteinase-3 gene polymorphism and dilatative pathology of ascending thoracic aorta. Medicina (Kaunas) 44, 386–391 (2008).

    Article  Google Scholar 

  115. Prakash, S., LeMaire, S. A., Bray, M., Milewicz, D. M. & Belmont, J. W. Large deletions and uniparental disomy detected by SNP arrays in adults with thoracic aortic aneurysms and dissections. Am. J. Med. Genet. A 152A, 2399–2405 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Guo, D. et al. Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13–14. Circulation 103, 2461–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Kakko, S. et al. Candidate locus analysis of familial ascending aortic aneurysms and dissections confirms the linkage to the chromosome 5q13–14 in Finnish families. J. Thorac. Cardiovasc. Surg. 126, 106–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Vaughan, C. J. et al. Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation 103, 2469–2475 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Pannu, H. et al. Mutations in transforming growth factor-β receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112, 513–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Guo, D. C. et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84, 617–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morisaki, H. et al. Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum. Mutat. 30, 1406–1411 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Zhu, L. et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat. Genet. 38, 343–349 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Stephen N. Palmer, PhD, ELS (Senior Scientific Medical Writer), and Marianne Mallia, ELS (Manager and Senior Medical Writer), of the Section of Scientific Publications at the Texas Heart Institute at St Luke's Episcopal Hospital, for invaluable editorial support. L. Russell is supported in part through the Biostatistics and Data Management Core of the Specialized Center of Clinically Oriented Research in Thoracic Aortic Aneurysms and Dissections (NIH P50 HL083794).

Author information

Authors and Affiliations

Authors

Contributions

S. A. LeMaire and L. Russell both researched data for the article, contributed to the discussion of content, wrote the article, and revised/edited the article before submission and after peer review.

Corresponding author

Correspondence to Scott A. LeMaire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeMaire, S., Russell, L. Epidemiology of thoracic aortic dissection. Nat Rev Cardiol 8, 103–113 (2011). https://doi.org/10.1038/nrcardio.2010.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing