Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs and cardiac pathology

Abstract

MicroRNA (miRNA) is the term used to describe endogenous, short (19–25 nucleotide long) regulatory RNA molecules that govern gene expression at the post-transcriptional level. They were initially thought of as a curiosity limited to the developmental timing of roundworms when the founding members were discovered in the early 1990s. They are now acknowledged as a fundamental regulator of gene expression for the development of many organisms. The importance of miRNA in biological processes of mammals other than development has recently surfaced, and the first report on the role of miRNAs in the heart was published in 2005. Intense studies are being conducted to elucidate the physiologic pathways regulated by miRNAs in this organ and how miRNAs are involved in cardiovascular pathology. Here, we comprehensively review what has been published on miRNA and heart disease to date.

Key Points

  • MicroRNAs (miRNAs) are short, 22-nucleotide, endogenous regulatory RNA molecules that repress gene expression at the post-transcriptional level by targeting messenger RNA

  • miRNAs are found in all cell types, and some are expressed in certain tissues more than in others—for example, miR-1, miR-133 and miR-208 are considered to be muscle-specific

  • miRNAs have been implicated in the regulation of many biological processes, such as development, metabolism and the immune response

  • Misexpression of miRNA has been correlated with many pathologies, such as cancer, and research is beginning to focus on the role of miRNAs in cardiovascular disease

  • Expression profiling of miRNAs might be a promising diagnostic and prognostic tool for cardiovascular pathologies, and normalization of dysregulated miRNA expression might become an invaluable means of treatment

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of miRNA biogenesis.
Figure 2: Schematic of siRNA processing within mammalian cells.
Figure 3: Overview of some miRNAs and their targets in the cells making up the myocardium.
Figure 4: Schematic of possible therapeutic interventions.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    CAS  PubMed  Google Scholar 

  3. Zaug, A. J. & Cech, T. R. The intervening sequence RNA of Tetrahymena is an enzyme. Science 231, 470–475 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Prasanth, K. V. & Spector, D. L. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev. 21, 11–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Frith, M. C., Pheasant, M. & Mattick, J. S. The amazing complexity of the human transcriptome. Eur. J. Hum. Genet. 13, 894–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Pang, K. C. et al. RNAdb—a comprehensive mammalian noncoding RNA database. Nucleic Acids Res. 33, D125–D130 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, V. N. & Nam, J. W. Genomics of microRNA. Trends Genet. 22, 165–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfeffer, S. et al. Identification of microRNAs of the herpes virus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chendrimada, T. P. et al. TRBP recruits the Dicer complex toAgo2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wightman, B., Bürglin, T. R., Gatto, J., Arasu, P. & Ruvkun, G. Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 5, 1813–1824 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Saxena S. et al. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 278, 44312–44319 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2005).

    Article  CAS  Google Scholar 

  32. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can upregulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kozak, M. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 423, 108–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 32, 9–14 (2008).

    Article  CAS  Google Scholar 

  35. Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, D. H., Saetrom, P., Snøve, O. Jr. & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16230–16235 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9, 219–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Morton, S. U. et al. microRNA-138 modulates cardiac patterning during embryonic development. Proc. Natl Acad. Sci. USA 105, 17830–17835 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Calin, G. A. et al. Frequent deletions and downregulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barbarotto, E., Schmittgen, T. D. & Calin, G. A. MicroRNAs and cancer: profile, profile, profile. Int. J. Cancer 122, 969–977 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Ikeda, S. et al. Altered microRNA expression in human heart disease. Physiol. Genomics 31, 367–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Sucharov, C., Bristow, M. R. & Port, J. D. miRNA expression in the failing human heart: functional correlates. J. Mol. Cell. Cardiol. 45, 185–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng, Y. et al. MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am. J. Pathol. 170, 1831–1840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Tatsuguchi, M. et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 42, 1137–1141 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. da Costa Martins, P. A. et al. Conditional Dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567–1576 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Rajabi, M. et al. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev. 12, 331–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Matkovich, S. J. et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 119, 1263–1271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 105, 2111–2116 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thum, T. Cardiac dissonance without conductors: how dicer depletion provokes chaos in the heart. Circulation 118, 1524–1527 (2008).

    Article  PubMed  Google Scholar 

  57. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, Q. et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37, D98–D104 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Papadopoulos, G. L., Reczko, M., Simossis, V. A., Sethupathy, P. & Hatzigeorgiou, A. G. The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37, D155–D158 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Hill, J. A. & Olson, E, N. Cardiac plasticity. N. Engl. J. Med. 358, 1370–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Bruneau, B. G. Developmental biology: tiny brakes for a growing heart. Nature 436, 181–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, N. et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ikeda, S. et al. microRNA-1 negatively regulates expression of the hypertrophy-associated genes calmodulin and Mef2a. Mol. Cell. Biol. doi:10.1128/MCB.01222–08.

  65. Khan, R. & Sheppard, R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118, 10–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature 456, 980–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Duisters, R. F. et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Narula, J., Haider, N., Arbustini, E. & Chandrashekhar, Y. Mechanisms of disease: apoptosis in heart failure—seeing hope in death. Nat. Clin. Pract. Cardiovasc. Med. 3, 681–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Xu, C. et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 120, 3045–3052 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Cheng, Y. et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol. doi:10.1016/j.yjmcc.2009.01.008

  72. Yin, C., Salloum, F. N. & Kukreja, R. C. A novel role of microRNA in late preconditioning. Upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ. Res. 104, 572–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hudlicka, O., Brown, M. & Egginton, S. Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72, 369–417 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 79, 581–588 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, X. H. et al. microRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin. Exp. Pharmacol. Physiol. 36, 181–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Solingen, C. et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med. doi:10.1111/j.1582–4934.2008.00613.x

  79. Nass, R. D., Aiba, T., Tomaselli, G. F. & Akar, F. G. Mechanisms of disease: ion channel remodeling in the failing ventricle. Nat. Clin. Pract. Cardiovasc. Med. 5, 196–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, Y. et al. Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of the abnormal QT prolongation and the associated arrhythmias in diabetic rabbits. Am. J. Physiol. 291, H1446–H1455 (2006).

    CAS  Google Scholar 

  81. Luo, X. et al. Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of I(Ks)-encoding genes and potential implications in regional heterogeneity of their expressions. J. Cell. Physiol. 212, 358–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Luo, X. et al. Downregulation of miRNA-1/miRNA-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J. Biol. Chem. 283, 20045–20052 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Szentadrassy, N. et al. Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovasc. Res. 65, 851–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Terentyev, D. et al. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56α and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104, 514–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA 98, 15149–15154 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takamizawa, J. et al. Reduced expression of the let-7microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 102, 19075–19080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, X. et al. Characterization of miRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Lawrie, C. H. et al. Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Hematol. 141, 672–675 (2008).

    Article  Google Scholar 

  94. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gilad, S. et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 3, e3148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tsuda, N. et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin. Cancer Res. 12, 6557–6564 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Xiao, J. et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4. J. Cell. Physiol. 212, 285–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, Y. S., Kim, H. K., Chung, S., Kim, K. S. & Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the downregulation of putative targets during differentiation. J. Biol. Chem. 280, 16635–16641 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA interference-based therapeutics. Nature 457, 426–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Rayburn, E. R. & Zhang, R. Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible? Drug Discov. Today 13, 513–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Mattick, J. S. A new paradigm for developmental biology. J. Exp. Biol. 210, 1526–1547 (2007).

    Article  PubMed  Google Scholar 

  105. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol. 13, 849–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Hon, L. S. & Zhang, Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 8, R166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mazière, P. & Enright, A. J. Prediction of microRNA targets. Drug Discov. Today 12, 452–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs in C.elegans. Curr. Biol. 13, 807–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Okamura, K. & Lai, E. C. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 9, 673–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Truss, M. et al. HuSiDa—the human siRNA database: an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells. Nucleic Acids Res. 33, D108–D111 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Chalk, A. M., Warfinge, R. E., Georgii-Hemming, P. & Sonnhammer, E. L. siRNAdb: a database of siRNA sequences. Nucleic Acids Res. 33, D131–D134 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Beuvink, I. et al. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res. 35, e52 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, E. J. et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines and tumors. RNA 14, 35–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kloosterman, W. P. et al. Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res. 34, 2558–2569 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Condorelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latronico, M., Condorelli, G. MicroRNAs and cardiac pathology. Nat Rev Cardiol 6, 418–429 (2009). https://doi.org/10.1038/nrcardio.2009.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing