Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting angiogenesis to restore the microcirculation after reperfused MI

Abstract

Since early reperfusion therapy for patients with acute myocardial infarction (AMI) was demonstrated to decrease mortality, numerous improvements in AMI management have focused on prompt reperfusion of the epicardial coronary arteries. However, in a substantial group of patients with AMI, reperfusion of the myocardial tissue is hindered by dysfunction of the microvasculature, despite successful restoration of the epicardial coronary flow. These patients have prolonged ischemia and an adverse clinical outcome. Although several studies investigating the etiology of microvascular dysfunction have been performed, little is known about the restoration process of microvascular dysfunction after reperfused AMI. The objective of this Review is to summarize our knowledge on natural restoration of the microvasculature after reperfused AMI, particularly with regard to angiogenesis, discuss diagnostic modalities used to identify patients with microvascular dysfunction and highlight the potential of pharmacological and cellular interventions to stimulate the recovery of the microvasculature by promoting angiogenesis.

Key Points

  • Despite successful primary percutaneous coronary intervention, a large proportion of patients with acute myocardial infarction show inadequate myocardial perfusion, owing to dysfunction of the microcirculation

  • Microvascular dysfunction is associated with an adverse clinical outcome

  • Tissue edema, vasoconstriction, endothelial cell swelling, inflammation, neutrophil plugging and the embolization of atheromatous and thrombotic debris are all causes of microvascular dysfunction

  • Damaged microvasculature can be restored by angiogenesis

  • Several growth factors and circulating mononuclear cells, including bone marrow mononuclear cells, are involved in the process of angiogenesis

  • Targeting angiogenesis constitutes a potential new treatment modality to counteract the negative effects of microvascular dysfunction after mechanically reperfused myocardial infarction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathophysiology and restoration of microvascular dysfunction.

Similar content being viewed by others

References

  1. Keeley, E. C., Boura, J. A. & Grines, C. L. Comparison of primary and facilitated percutaneous coronary interventions for ST-elevation myocardial infarction: quantitative review of randomised trials. Lancet 367, 579–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Brodie, B. R. et al. Importance of infarct-related artery patency for recovery of left ventricular function and late survival after primary angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 28, 319–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Brodie, B. R. et al. Importance of infarct-related artery patency for recovery of left ventricular function and late survival after primary angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 28, 319–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Grines, C. L. et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N. Engl. J. Med. 328, 673–679 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy, J. W. et al. The western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction. A 12-month follow-up report. N. Engl. J. Med. 312, 1073–1078 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, K. C. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97, 765–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Koch, K. T. et al. Proximal embolic protection with aspiration in percutaneous coronary intervention using the Proxis device. Rev. Cardiovasc. Med. 8, 160–166 (2007).

    PubMed  Google Scholar 

  8. Sardella, G. et al. Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. J. Am. Coll. Cardiol. 53, 309–315 (2009).

    Article  PubMed  Google Scholar 

  9. Vlaar, P. J. et al. Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet 371, 1915–1920 (2008).

    Article  PubMed  Google Scholar 

  10. Petronio, A. S. et al. Left ventricular remodeling after primary coronary angioplasty in patients treated with abciximab or intracoronary adenosine. Am. Heart J. 150, 1015 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Kunadian, V. et al. Intracoronary pharmacotherapy in the management of coronary microvascular dysfunction. J. Thromb. Thrombolysis 26, 234–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Ramaraj, R. & Movahed, M. R. Microvascular dysfunction following primary percutaneous coronary intervention in the setting of ST-elevation myocardial infarction. J. Invasive Cardiol. 20, 603–614 (2008).

    PubMed  Google Scholar 

  13. Srinivasan, M., Rihal, C., Holmes, D. R. & Prasad, A. Adjunctive thrombectomy and distal protection in primary percutaneous coronary intervention: impact on microvascular perfusion and outcomes. Circulation 119, 1311–1319 (2009).

    Article  PubMed  Google Scholar 

  14. Bonderman, D. et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood 99, 2794–2800 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hirata, K., Matsuda, Y., Akita, H., Yokoyama, M. & Fukuzaki, H. Myocardial ischaemia induced by endothelin in the intact rabbit: angiographic analysis. Cardiovasc. Res. 24, 879–883 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Ma, X. L., Weyrich, A. S., Lefer, D. J. & Lefer, A. M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ. Res. 72, 403–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Maxwell, L. & Gavin, J. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvasc. Res. 43, 255–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Maier, W. et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation 111, 1355–1361 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Sheridan, F. M., Cole, P. G. & Ramage, D. Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an in vivo canine model. Circulation 93, 1784–1787 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Kotani, J. et al. Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation 106, 1672–1677 (2002).

    Article  PubMed  Google Scholar 

  21. Manciet, L. H., Poole, D. C., McDonagh, P. F., Copeland, J. G. & Mathieu-Costello, O. Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am. J. Physiol. 266, H1541–H1550 (1994).

    CAS  PubMed  Google Scholar 

  22. Maxwell, L. & Gavin, J. B. The role of post-ischaemic reperfusion in the development of microvascular incompetence and ultrastructural damage in the myocardium. Basic Res. Cardiol. 86, 544–553 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Matsumura, K., Jeremy, R. W., Schaper, J. & Becker, L. C. Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97, 795–804 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Tonnesen, M. G., Feng, X. & Clark, R. A. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 5, 40–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Conway, E. M., Collen, D. & Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, S. J. et al. Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am. J. Pathol. 174, 1972–1980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Gray, C. et al. Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler. Thromb. Vasc. Biol. 27, 2135–2141 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Royen N. et al. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc. Res. 49, 543–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Pipp, F. et al. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler. Thromb. Vasc. Biol. 24, 1664–1668 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Simons, M. et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 102, E73–E86 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Henriques, J. P. et al. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur. Heart J. 23, 1112–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Sezer, M. et al. Relationship between collateral blood flow and microvascular perfusion after reperfused acute myocardial infarction. Jpn. Heart J. 44, 855–863 (2003).

    Article  PubMed  Google Scholar 

  34. Frangogiannis, N. G., Michael, L. H. & Entman, M. L. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48, 89–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ren, G., Michael, L. H., Entman, M. L. & Frangogiannis, N. G. Morphological characteristics of the microvasculature in healing myocardial infarcts. J. Histochem. Cytochem. 50, 71–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Arras, M. et al. Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res. Cardiol. 93, 97–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, S. H. et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med. 342, 626–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Frangogiannis, N. G. et al. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J. 15, 1428–1430 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Zachary, I. & Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 49, 568–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Weis, S. et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J. Clin. Invest. 113, 885–894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Banai, S. et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc. Res. 28, 1176–1179 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Kranz, A., Rau, C., Kochs, M. & Waltenberger, J. Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. J. Mol. Cell. Cardiol. 32, 65–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Soeki, T. et al. Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 93, 168–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Pannitteri, G., Petrucci, E. & Testa, U. Coordinate release of angiogenic growth factors after acute myocardial infarction: evidence of a two-wave production. J. Cardiovasc. Med. (Hagerstown) 7, 872–879 (2006).

    Article  Google Scholar 

  45. Saeed, M. et al. Adeno-associated viral vector-encoding vascular endothelial growth factor gene: effect on cardiovascular MR perfusion and infarct resorption measurements in swine. Radiology 243, 451–460 (2007).

    Article  PubMed  Google Scholar 

  46. Koneru, S. et al. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1. J. Cell. Mol. Med. 12, 2651–2664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones, N., Iljin, K., Dumont, D. J. & Alitalo, K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat. Rev. Mol. Cell Biol. 2, 257–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Oike, Y., Yasunaga, K. & Suda, T. Angiopoietin-related/angiopoietin-like proteins regulate angiogenesis. Int. J. Hematol. 80, 21–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Shyu, K. G., Chang, C. C., Wang, B. W., Kuan, P. & Chang, H. Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion. Clin. Sci. (Lond.) 105, 287–294 (2003).

    Article  CAS  Google Scholar 

  50. Xaymardan, M. et al. Senescent impairment in synergistic cytokine pathways that provide rapid cardioprotection in the rat heart. J. Exp. Med. 199, 797–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carmeliet, P. Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ. Res. 87, 176–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y. et al. Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 92, 768–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Waltenberger, J. Modulation of growth factor action: implications for the treatment of cardiovascular diseases. Circulation 96, 4083–4094 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Battler, A. et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J. Am. Coll. Cardiol. 22, 2001–2006 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Horrigan, M. C. et al. Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 94, 1927–1933 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Scheinowitz, M. et al. Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion. Isr. Med. Assoc. J. 4, 109–113 (2002).

    CAS  PubMed  Google Scholar 

  57. Fukuyama, N. et al. Intravenous injection of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex promotes angiogenesis in a rat myocardial ischemia/reperfusion injury model. Basic Res. Cardiol. 102, 209–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Naldini, L. et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6, 501–504 (1991).

    CAS  PubMed  Google Scholar 

  59. Bhargava, M. et al. Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ. 3, 11–20 (1992).

    CAS  PubMed  Google Scholar 

  60. Ono, K., Matsumori, A., Shioi, T., Furukawa, Y. & Sasayama, S. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation 95, 2552–2558 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Yasuda, S. et al. Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J. Am. Coll. Cardiol. 36, 115–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, X. H. et al. In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia–reperfusion injury through its multiple actions. J. Card. Fail. 13, 874–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Saeed, M. et al. MR assessment of myocardial perfusion, viability, and function after intramyocardial transfer of VM202, a new plasmid human hepatocyte growth factor in ischemic swine myocardium. Radiology 249, 107–118 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Birdsall, H. H. et al. Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation 95, 684–692 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Dimmeler, S., Burchfield, J. & Zeiher, A. M. Cell-based therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28, 208–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Massa, M. et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105, 199–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  PubMed  Google Scholar 

  69. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V. J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204–1219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, M. et al. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J. Mol. Cell. Cardiol. 42, 441–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Halkos, M. E. et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res. Cardiol. 103, 525–536 (2008).

    Article  PubMed  Google Scholar 

  72. Schuleri, K. H. et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am. J. Physiol. Heart Circ. Physiol. 294, H2002–H2011 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Tang, J., Xie, Q., Pan, G., Wang, J. & Wang, M. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur. J. Cardiothorac. Surg. 30, 353–361 (2006).

    Article  PubMed  Google Scholar 

  74. Templin, C. et al. Ex vivo expanded hematopoietic progenitor cells improve cardiac function after myocardial infarction: role of beta-catenin transduction and cell dose. J. Mol. Cell. Cardiol. 45, 394–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Kanellakis, P., Slater, N. J., Du, X. J., Bobik, A. & Curtis, D. J. Granulocyte colony-stimulating factor and stem cell factor improve endogenous repair after myocardial infarction. Cardiovasc. Res. 70, 117–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Sato, T. et al. G-CSF after myocardial infarction accelerates angiogenesis and reduces fibrosis in swine. Int. J. Cardiol. 127, 166–173 (2008).

    Article  PubMed  Google Scholar 

  77. Kern, M. J. et al. Determination of angiographic (TIMI grade) blood flow by intracoronary Doppler flow velocity during acute myocardial infarction. Circulation 94, 1545–1552 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Henriques, J. P. et al. Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation 107, 2115–2119 (2003).

    Article  PubMed  Google Scholar 

  79. Iwakura, K. et al. Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation 94, 1269–1275 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Montisci, R. et al. Non-invasive coronary flow reserve is correlated with microvascular integrity and myocardial viability after primary angioplasty in acute myocardial infarction. Heart 92, 1113–1118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bax, M. et al. Short- and long-term recovery of left ventricular function predicted at the time of primary percutaneous coronary intervention in anterior myocardial infarction. J. Am. Coll. Cardiol. 43, 534–541 (2004).

    Article  PubMed  Google Scholar 

  82. Wu, K. C. et al. Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J. Am. Coll. Cardiol. 32, 1756–1764 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Okamura, A. et al. Usefulness of a new grading system based on coronary flow velocity pattern in predicting outcome in patients with acute myocardial infarction having percutaneous coronary intervention. Am. J. Cardiol. 96, 927–932 (2005).

    Article  PubMed  Google Scholar 

  84. Kim, R. J., Chen, E. L., Lima, J. A. & Judd, R. M. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94, 3318–3326 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Hirsch, A. et al. Relation between the assessment of microvascular injury by cardiovascular magnetic resonance and coronary Doppler flow velocity measurements in patients with acute anterior wall myocardial infarction. J. Am. Coll. Cardiol. 51, 2230–2238 (2008).

    Article  PubMed  Google Scholar 

  86. Nijveldt, R. et al. Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J. Am. Coll. Cardiol. 52, 181–189 (2008).

    Article  PubMed  Google Scholar 

  87. Yla-Herttuala, S., Markkanen, J. E. & Rissanen, T. T. Gene therapy for ischemic cardiovascular diseases: some lessons learned from the first clinical trials. Trends Cardiovasc. Med. 14, 295–300 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. Takano, H. et al. Feasibility and safety of granulocyte colony-stimulating factor treatment in patients with acute myocardial infarction. Int. J. Cardiol. 122, 41–47 (2007).

    Article  PubMed  Google Scholar 

  89. Valgimigli, M. et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur. Heart J. 26, 1838–1845 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Kang, H. J. et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363, 751–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Assmus, B. et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  PubMed  Google Scholar 

  92. Strauer, B. E. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918 (2002).

    Article  PubMed  Google Scholar 

  93. Erbs, S. et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116, 366–374 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels van Royen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Laan, A., Piek, J. & van Royen, N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol 6, 515–523 (2009). https://doi.org/10.1038/nrcardio.2009.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing