Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Telomerase beyond telomeres

Abstract

The role of telomerase in actively proliferating cells is assumed to be restricted to maintaining of telomeres above a minimum-length threshold, thereby preventing telomere exhaustion and chromosomal instability. However, forced telomerase expression in cells and mice with normal-length telomeres has shown that telomerase promotes growth and survival in a manner that is uncoupled from net telomere lengthening. These findings imply that telomerase might have a fundamental role in tumour growth and survival, even at stages when telomeres are sufficiently long.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A putative structure of a capped telomere based on the T-loop model.
Figure 2: The putative roles of telomerase in cells with sufficiently long telomeres.
Figure 3: Model for telomere dynamics in telomerase-deficient cells — for example, somatic cells.

Similar content being viewed by others

References

  1. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Chan, S.W-L. & Blackburn, E. H. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21, 553–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. De Lange, T. . Protection of mammalian telomeres. Oncogene 21, 532–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 22, 3474–3487 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Karlseder, J., Smogorzewska, A. and de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Goytisolo, F. A. & Blasco, M. A. Many ways to telomere dysfunction: in vivo studies using mouse models. Oncogene 21, 584–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  Google Scholar 

  9. Espejel, S. et al. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 21, 2207–2219 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  Google Scholar 

  11. Collins, K. & Mitchell, J. R. Telomerase in the human organism. Oncogene 21, 564–579 (2002).

    Article  CAS  Google Scholar 

  12. Lee, H-W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  Google Scholar 

  13. Samper, E., Flores, J. M. & Blasco, M. A. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2, 800–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hemann, M. T., Strong, M. A., Hao, L. Y. and Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  Google Scholar 

  15. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  Google Scholar 

  16. Hiyama, E. & Hiyama, K. Clinical utility of telomerase in cancer. Oncogene 21, 643–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Mattson, M. P., Fu, W. & Zhang, P. Emerging roles for telomerase in regulating cell differentiation and survival: a neuroscientist's perspective. Mech. Aging Dev. 122, 659–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. González-Suárez, E. et al. Increased epidermal tumors and increased wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J. 20, 2619–2630 (2001).

    Article  PubMed  Google Scholar 

  19. Reyes, M. et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98, 2615–2625 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. McEachern, M. J. & Blackburn, E. H. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376, 403–409 (1995).

    Article  CAS  Google Scholar 

  21. Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659–1668 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Prescott, J. C. & Blackburn, E. H. Telomerase RNA template mutations reveal sequence-specific requirements for activation and repression of telomerase action at telomeres. Mol. Cell. Biol. 20, 2941–2948 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Herrera, E. et al. Disease states associated to telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, J., Wang, H., Bishop, M. and Blackburn, E. H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  Google Scholar 

  27. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. González-Suárez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet. 26, 114–117 (2000).

    Article  PubMed  Google Scholar 

  29. Corey, D. R. Telomerase inhibition, oligonucleotides, and clinical trials. Oncogene 21, 631–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Neidle, S. & Read, M. A. G-quadruplexes as therapeutic targets. Biopolymers 56, 195–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Blasco, M. A., Rizen, M., Greider, C. W. and Hanahan, D. Differential regulation of telomerase activity and its RNA component during multistage tumorigenesis. Nature Genet. 12, 200–204 (1996).

    Article  CAS  Google Scholar 

  33. Broccoli, D., Godley, L. A., Donehower, L. A., Varmus, H. E. & de Lange, T. Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol. Cell. Biol. 16, 3765–3772 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. González–Suárez, E., Flores, J. M. & Blasco, M. A. Cooperation between p53 mutation and high telomerase transgenic expression in spontaneous cancer development. Mol. Cell. Biol. (in the press).

  35. Artandi, S. E. et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl Acad. Sci. USA 99, 8191–8196 (2002).

    Article  CAS  Google Scholar 

  36. Thomas, M. et al. Cooperation between hTERT, SV40 T antigen and oncogenic Ras in tumorigenesis: a cell transplantation model using bovine adrenocortical cells. Neoplasia (in the press).

  37. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl Acad. Sci. USA 98, 10308–11033 (2001).

    Article  CAS  Google Scholar 

  38. Stampfer, M. R. et al. Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor-β growth inhibition in p16INK4A(−) human mammary epithelial cells. Proc. Natl Acad. Sci. USA 98, 4498–4503 (2001).

    Article  CAS  Google Scholar 

  39. Lu, C. L., Fu, W. & Mattson, M. P. Telomerase protects developing neurons against DNA damage-induced cell death. Brain Res Dev Brain Res 131, 167–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, H., Fu, W. & Mattson, M. P. The catalytic subunit of telomerase protects neurones against amyloid β-peptide induced apoptosis. J. Neurochem. 75, 117–124 (2000).

    Article  CAS  Google Scholar 

  41. Xiang, H. et al. Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating Rb/E2F pathway. Oncogene 21, 3784–3791 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr. Biol. 10, 1459–1462 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Nikaido, R. et al. Presence of telomeric G-strand tails in the telomerase catalytic subunit Tert knockout mice. Genes Cells 4, 563–572 (1999).

    Article  PubMed  Google Scholar 

  44. Bailey, S. M., Conforth, M. N., Kurimasa, A., Chen, D. J. and Goodwin, E. H. Strand-specific postreplicative processing of mammalian telomeres. Science 293, 2462–2465 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Goytisolo, F. A. et al. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J. Exp. Med. 192, 1625–1636 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Serrano for critical reading of the manuscript. Research at the laboratory of M.A.B. is funded by the MCYT (Ministry of Science and Technology), CAM (Regional Government of Madrid), the European Union and the DIO (Department of Immunology and Oncology). The DIO was founded and is supported by the Spanish Research Council (CSIC) and by Pharmacia.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

β-actin

AKT

c-ABL

DNA-PKcs

E2F

keratin 5

Ku86

p53

PI3K

RB

Tert

TERT

Terc

TERC

TRF2

Trp53

FURTHER INFORMATION

Multimedia Telomere Resource

The Telomere Club

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasco, M. Telomerase beyond telomeres. Nat Rev Cancer 2, 627–633 (2002). https://doi.org/10.1038/nrc862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing