Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Histone methyltransferases, diet nutrients and tumour suppressors

This article has been updated

Abstract

It is well known that an insufficiency of dietary methyl-group donors can cause cancer, and that a deficiency in methylation is characteristic of cancer, but how carcinogenesis results from abnormal methyl-donor metabolism has long remained a matter of speculation. Recently, however, it has been found that some histone methyltransferases, which require methyl donors for activity, are tumour suppressors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the SET and PR domains with a plant protein lysine methyltransferase.
Figure 2: The yin–yang of PR- and SET-domain genes in carcinogenesis.
Figure 3: The methionine metabolism pathway.

Similar content being viewed by others

Change history

  • 17 May 2002

    There was an error in the third paragraph, fourth sentance: this originally read "More recently, it was realized that they belong to a protein superfamily that contains one of two similar... "They belong to" and "that" were removed and the sentance re-written by request of the author. This incorrect version appeared as CP onlin material for c. one week.

Notes

  1. There was an error in the third paragraph of the advanced online publication of this article. The error has now been corrected in the HTML and PDF versions, and the article is correct in the print issue.

References

  1. Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 66, 1191–1308 (1981).

    CAS  PubMed  Google Scholar 

  2. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    CAS  PubMed  Google Scholar 

  3. Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).

    CAS  PubMed  Google Scholar 

  4. Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet. 21, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  6. Jiang, G.-L. & Huang, S. The yin–yang of PR-domain family genes in tumorigenesis. Histol. Histopathol. 15, 109–117 (2000).

    CAS  PubMed  Google Scholar 

  7. Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones, R. S. & Gelbart, W. M. The Drosophila Polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Mol. Cell. Biol. 13, 6357–6366 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Buyse, I. M., Shao, G. & Huang, S. The retinoblastoma protein binds to RIZ, a zinc finger protein that shares an epitope with the adenovirus E1A protein. Proc. Natl Acad. Sci. USA 92, 4467–4471 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, S. Blimp-1 is the murine homolog of the human transcriptional repressor PRDI–BF1. Cell 78, 9 (1994).

    CAS  PubMed  Google Scholar 

  11. Huang, S., Shao, G. & Liu, L. The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J. Biol. Chem. 273, 15933–15940 (1998).

    CAS  PubMed  Google Scholar 

  12. Cui, X. et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nature Genet. 18, 331–337 (1998).

    CAS  PubMed  Google Scholar 

  13. Cardoso, C. et al. Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet. 7, 679–684 (1998).

    CAS  PubMed  Google Scholar 

  14. Rozenblatt-Rosen, O. et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl Acad. Sci. USA 95, 4152–4157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  16. Fears, S. et al. Intergenic splicing of MDS1 and EVII occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc. Natl Acad. Sci. USA 93, 1642–1647 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Steele-Perkins, G. et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev. 15, 2250–2262 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, L., Shao, G., Steele-Perkins, G. & Huang, S. The retinoblastoma interacting zinc finger gene RIZ produces a PR domain lacking product through an internal promoter. J. Biol. Chem. 272, 2984–2991 (1997).

    CAS  PubMed  Google Scholar 

  19. Buyse, I. M., Takahashi, E. & Huang, S. Physical mapping of the retinoblastoma-interacting zinc finger gene RIZ to D1S228 on chromosome 1p36. Genomics 34, 119–121 (1996).

    CAS  PubMed  Google Scholar 

  20. Chadwick, R. B. et al. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc. Natl Acad. Sci. USA 97, 2662–2667 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. He, L. et al. RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2-M cell cycle arrest and/or apoptosis. Cancer Res. 58, 4238–4244 (1998).

    CAS  PubMed  Google Scholar 

  22. Jiang, G.-L., Liu, L., Buyse, I. M., Simon, D. & Huang, S. Decreased RIZ1 expression but not RIZ2 in hepatoma and suppression of hepatoma tumorigenicity by RIZ1. Int. J. Cancer 83, 541–547 (1999).

    CAS  PubMed  Google Scholar 

  23. Du, Y. et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res. 61, 8094–8099 (2001).

    CAS  PubMed  Google Scholar 

  24. Jiang, G. L. & Huang, S. Adenovirus expressing RIZ1 in tumor suppressor gene therapy of microsatellite-unstable colorectal cancers. Cancer Res. 61, 1796–1798 (2001).

    CAS  PubMed  Google Scholar 

  25. Nucifora, G. et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc. Natl Acad. Sci. USA 91, 4004–4008 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Morishita, K. et al. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54, 831–840 (1988).

    CAS  PubMed  Google Scholar 

  27. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL1 gene, related to Drosophila trithorax, to the AF4 gene. Cell 71, 701–708 (1992).

    CAS  PubMed  Google Scholar 

  28. Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    CAS  PubMed  Google Scholar 

  29. Djabali, M. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet. 2, 113–118 (1992).

    CAS  PubMed  Google Scholar 

  30. Arakawa, H. et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc. Natl Acad. Sci. USA 95, 4573–4578 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Baffa, R., Negrini, M., Schichman, S. A., Huebner, K. & Croce, C. M. Involvement of the ALL1 gene in a solid tumor. Proc. Natl Acad. Sci. USA 92, 4922–4926 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peters, A. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  33. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    CAS  PubMed  Google Scholar 

  34. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromodomain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  35. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  36. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nature Genet. 30, 365–366 (2002).

    CAS  PubMed  Google Scholar 

  37. Chesi, M. et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92, 3025–3034 (1998).

    CAS  PubMed  Google Scholar 

  38. Lin, Y., Wong, K.-K. & Calame, K. Repression of c-Myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–598 (1997).

    CAS  PubMed  Google Scholar 

  39. Mochizuki, N. et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 96, 3209–3214 (2000).

    CAS  PubMed  Google Scholar 

  40. Caudill, M. A. et al. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine β-synthase heterozygous mice. J Nutr 131, 2811–2818 (2001).

    CAS  PubMed  Google Scholar 

  41. Hershfield, M. S. & Krodich, N. M. S-adenosyl-homocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202, 757–760 (1978).

    CAS  PubMed  Google Scholar 

  42. Williams-Ashman, H. G., Seidenfeld, J. & Galletti, P. Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine. Biochem. Pharmacol. 31, 277–288 (1982).

    CAS  PubMed  Google Scholar 

  43. Mikol, Y. B., Hoover, K. L., Creasia, D. & Poirier, L. A. Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 4, 1619–1629 (1983).

    CAS  PubMed  Google Scholar 

  44. Ghoshal, A. K. & Farber, E. The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5, 1367–1370 (1984).

    CAS  PubMed  Google Scholar 

  45. Shivapurkar, N. & Poirier, L. A. Tissue levels of S-adenosyl-methionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis 4, 1051–1057 (1983).

    CAS  PubMed  Google Scholar 

  46. Cravo, M. L. et al. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res. 52, 5002–5006 (1992).

    CAS  PubMed  Google Scholar 

  47. Christensen, B. et al. Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 17, 569–573 (1997).

    CAS  PubMed  Google Scholar 

  48. Fullerton, F. R., Hoover, K., Mikol, Y. B., Creasia, D. A. & Poirier, L. A. The inhibition by methionine and choline of liver carcinoma formation in male C3H mice dosed with diethylnitrosamine and fed phenobarbital. Carcinogenesis 11, 1301–1305 (1990).

    CAS  PubMed  Google Scholar 

  49. Giovannucci, E. et al. Multivitamin use, folate, and colon cancer in women in the Nurses' Health Study. Ann. Intern. Med. 129, 517–524 (1998).

    CAS  PubMed  Google Scholar 

  50. Prinz-Langenohl, R., Fohr, I. & Pietrzik, K. Beneficial role for folate in the prevention of colorectal and breast cancer. Eur. J. Nutrit. 40, 98–105 (2001).

    CAS  Google Scholar 

  51. Butterworth, C. E. Jr, Hatch, K. D., Gore, H., Mueller, H. & Krumdieck, C. L. Improvement in cervical dysplasia associated with folic acid therapy in users of oral contraceptives. Am. J. Clin. Nutr. 35, 73–82 (1982).

    CAS  PubMed  Google Scholar 

  52. Heimburger, D. C. et al. Improvement in bronchial squamous metaplasia in smokers treated with folate and vitamin B12. Report of a preliminary randomized, double-blind intervention trial. JAMA 259, 1525–1530 (1988).

    CAS  PubMed  Google Scholar 

  53. Hartman, T. J. et al. Association of the B-vitamins pyridoxal 5′-phosphate (B(6)), B(12), and folate with lung cancer risk in older men. Am. J. Epidemiol. 153, 688–694 (2001).

    CAS  PubMed  Google Scholar 

  54. Kato, I. et al. Serum folate, homocysteine and colorectal cancer risk in women: a nested case–control study. Br. J. Cancer 79, 1917–1922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chello, P. L. & Bertino, J. R. Dependence of 5-methyltetra-hydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res. 33, 1898–1904 (1973).

    CAS  PubMed  Google Scholar 

  56. Hoffman, R. M. & Erbe, R. W. High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc. Natl Acad. Sci. USA 73, 1523–1527 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stern, P. H. & Hoffman, R. M. Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20, 663–670 (1984).

    CAS  PubMed  Google Scholar 

  58. Toohey, J. I. Methylthio group cleavage from methylthioadenosine. Description of an enzyme and its relationship to the methylthio requirement of certain cells in culture. Biochem. Biophys. Res. Commun. 78, 1273–1280 (1977).

    CAS  PubMed  Google Scholar 

  59. Nobori, T. et al. Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. Proc. Natl Acad. Sci. USA 93, 6203–6208 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang, B. Defects in methylthioadenosine phosphorylase are associated with but not responsible for methionine-dependent tumor cell growth. Cancer Res. 60, 5543–5547 (2000).

    CAS  PubMed  Google Scholar 

  61. Dreyling, M. H., Roulston, D., Bohlander, S. K., Vardiman, J. & Olopade, O. I. Codeletion of CDKN2 and MTAP genes in a subset of non-Hodgkin's lymphoma may be associated with histologic transformation from low-grade to diffuse large-cell lymphoma. Genes Chromosom. Cancer 22, 72–78 (1998).

    CAS  PubMed  Google Scholar 

  62. Schmid, M. et al. Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC). Oncogene 17, 2669–2675 (1998).

    CAS  PubMed  Google Scholar 

  63. Pegg, A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 48, 759–774 (1988).

    CAS  PubMed  Google Scholar 

  64. Megosh, L. et al. Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res. 55, 4205–4209 (1995).

    CAS  PubMed  Google Scholar 

  65. Redman, C. et al. Involvement of polyamines in selenomethionine induced apoptosis and mitotic alterations in human tumor cells. Carcinogenesis 18, 1195–1202 (1997).

    CAS  PubMed  Google Scholar 

  66. Wainfan, E. & Poirier, L. A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 52, 2071s–2077s (1992). | PubMed |

    CAS  PubMed  Google Scholar 

  67. Rushmore, T. H. et al. A choline-devoid diet, carcinogenic in the rat, induces DNA damage and repair. Carcinogenesis 7, 1677–1680 (1986).

    CAS  PubMed  Google Scholar 

  68. James, S. J., Miller, B. J., Cross, D. R., McGarrity, L. J. & Morris, S. M. The essentiality of folate for the maintenance of deoxynucleotide precursor pools, DNA synthesis, and cell cycle progression in PHA-stimulated lymphocytes. Environ. Health Perspect. 101 (Suppl. 5), 173–178 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. da Costa, K. A., Cochary, E. F., Blusztajn, J. K., Garner, S. C. & Zeisel, S. H. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats. J. Biol. Chem. 268, 2100–2105 (1993).

    CAS  PubMed  Google Scholar 

  70. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    CAS  PubMed  Google Scholar 

  71. Blount, B. C. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl Acad. Sci. USA 94, 3290–3295 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Duthie, S. J., Grant, G. & Narayanan, S. Increased uracil misincorporation in lymphocytes from folate-deficient rats. Br. J. Cancer 83, 1532–1537 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Houlston, R. S. & Tomlinson, I. P. Polymorphisms and colorectal tumor risk. Gastroenterology 121, 282–301 (2001).

    CAS  PubMed  Google Scholar 

  74. Ma, J. et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57, 1098–1102 (1997).

    CAS  PubMed  Google Scholar 

  75. Sohn, K. J. et al. The effect of dietary folate on Apc and p53 mutations in the dimethylhydrazine rat model of colorectal cancer. Carcinogenesis 20, 2345–2350 (1999).

    CAS  PubMed  Google Scholar 

  76. Corda, Y. et al. Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions. Nature Genet. 21, 204–208 (1999).

    CAS  PubMed  Google Scholar 

  77. McCully, K. S. Homocystinuria, arteriosclerosis, methylmalonic aciduria, and methyltransferase deficiency: a key case revisited. Nutr. Rev. 50, 7–12 (1992).

    CAS  PubMed  Google Scholar 

  78. Seshadri, S. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med. 346, 476–483 (2002).

    CAS  PubMed  Google Scholar 

  79. Tsai, J. C. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc. Natl Acad. Sci. USA 91, 6369–6373 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gottlieb, P. D. et al. BOP encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genet. 1 April 2002 (DOI:10.1038/ng866).

  81. Brattstrom, L., Lindgren, A., Israelsson, B., Andersson, A. & Hultberg, B. Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J. Internal Med. 236, 633–641 (1994).

    CAS  PubMed  Google Scholar 

  82. Giovannucci, E. et al. Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men. J. Natl Cancer Inst. 87, 265–273 (1995).

    CAS  PubMed  Google Scholar 

  83. Wu, K. et al. A prospective study on folate, B12, and pyridoxal 5′-phosphate (B6) and breast cancer. Cancer Epidemiol Biomarkers Prev 8, 209–217 (1999).

    CAS  PubMed  Google Scholar 

  84. Hsing, A. W. et al. Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer 71, 745–750 (1993).

    CAS  PubMed  Google Scholar 

  85. Stolzenberg-Solomon, R. Z. et al. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J. Natl Cancer Inst. 91, 535–541 (1999).

    CAS  PubMed  Google Scholar 

  86. Esteller, M., Garcia, A., Martinez-Palones, J. M., Xercavins, J. & Reventos, J. Germ line polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis 18, 2307–2311 (1997).

    CAS  PubMed  Google Scholar 

  87. Matsuo, K. et al. Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 97, 3205–3209 (2001).

    CAS  PubMed  Google Scholar 

  88. Gershoni-Baruch, R. et al. Association of the C677T polymorphism in the MTHFR gene with breast and/or ovarian cancer risk in Jewish women. Eur. J. Cancer 36, 2313–2316 (2000).

    CAS  PubMed  Google Scholar 

  89. Piyathilake, C. J. et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism increases the risk of cervical intraepithelial neoplasia. Anticancer Res. 20, 1751–1757 (2000).

    CAS  PubMed  Google Scholar 

  90. Shen, H. et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and risk of gastric cancer in a Chinese population: a case–control study. Int. J. Cancer 95, 332–336 (2001).

    CAS  PubMed  Google Scholar 

  91. Ma, J. et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 8, 825–829 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

Cancer.gov

breast cancer

cervical cancer

colon cancer

liver cancer

lung cancer

melanoma

myeloid leukaemia

neuroblastoma

osteosarcoma

LocusLink

Apc

BOP

BRCA1

BRCA2

CDKN2A

E2F1

EVI1

H3

MDS1

MTAP

MTHFR

MYC

NSD1

NSD2

p53

PRDI-BF1

PRDM16

protein kinase C

RB

Riz1

RIZ1

RIZ2

spermidine synthase

SUV39H1

SUV39H2

Trp53

uracil DNA glycosylase

OMIM

Sotos syndrome

<i>Saccharomyces</i> Genome Database

Mec3

Set1

FURTHER INFORMATION

Pfam Database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S. Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev Cancer 2, 469–476 (2002). https://doi.org/10.1038/nrc819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing