Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conditional mouse models of sporadic cancer

Key Points

  • Sporadic cancer development is triggered by initiating mutations in a single cell, which result in tumour growth in a genetically wild-type environment that might actively contribute to tumour progression.

  • Tumour models that use conventional transgenic or knockout mice do not allow modelling of sporadic cancer, because the initiating mutation is present in all cells of a specific tissue or throughout the body. These cells include those that constitute the tumour microenvironment.

  • Various methods for conditional tumour-suppressor gene mutation and oncogene activation allow modelling of sporadic cancer in genetically engineered mice.

  • Recombinase-mediated conditional gene mutation can be used successfully to circumvent embryonic lethality or unwanted tumorigenesis in conventional tumour-suppressor gene knockouts.

  • Tumour growth and maintenance in mice with regulatable oncogene expression depends, in most cases, on continuous oncogene expression, supporting the validity of these factors as therapeutic targets.

  • Combining mouse models of sporadic cancer with various genome-wide screens for genetic alterations allows a comparison, on a molecular level, of mouse tumours with their human counterparts, and facilitates the discovery of new cancer genes and pathways that are involved in multistep tumorigenesis.

  • Mouse imaging systems that enable the non-invasive monitoring of tumour development will render conditional mouse models of sporadic cancer particularly useful for preclinical testing of therapeutic intervention or chemoprevention strategies.

Abstract

First-generation mouse tumour models, which used transgenic mice or conventional knockouts, are now being superseded by models that are based on conditional knockouts and mice that carry regulatable oncogenes. In these mice, somatic mutations can be induced in a tissue-specific and time-controlled fashion, which more faithfully mimics sporadic tumour formation. These second-generation models provide exciting new opportunities to gain insight into the contribution of known and unknown genes in the initiation, progression and treatment of cancer, and mimic human cancer better than ever before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional versus conditional mouse tumour models.
Figure 2: Systems that allow conditional gene mutation in mice.
Figure 3: Systems that allow controllable oncogene expression in mice.
Figure 4: In vivo imaging of spontaneous tumour development.

Similar content being viewed by others

References

  1. Morse, H. C. Origins of Inbred Mice (Academic Press, New York, 1978).

    Google Scholar 

  2. Furth, J., Seibold, H. R. & Rathbone, R. R. Experimental studies on lymphomatosis of mice. Am. J. Cancer 19, 521–526 (1933).

    Google Scholar 

  3. Hilgers, J. & Sluyser, M. Mammary Tumors in the Mouse (Elsevier/North-Holland Biomedical Press, Amsterdam, 1981).

    Google Scholar 

  4. Bittner, J. J. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84, 162 (1936).

    CAS  PubMed  Google Scholar 

  5. Li, J. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genet. 23, 348–353 (1999).

    CAS  PubMed  Google Scholar 

  6. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    CAS  PubMed  Google Scholar 

  7. Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    CAS  PubMed  Google Scholar 

  8. Brinster, R. L. et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37, 367–379 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    CAS  PubMed  Google Scholar 

  10. Robertson, E., Bradley, A., Kuehn, M. & Evans, M. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448 (1986).

    CAS  PubMed  Google Scholar 

  11. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    CAS  PubMed  Google Scholar 

  12. Hakem, R. & Mak, T. W. Animal models of tumor-suppressor genes. Annu. Rev. Genet. 35, 209–241 (2001).

    CAS  PubMed  Google Scholar 

  13. Christofori, G. & Hanahan, D. Molecular dissection of multi-stage tumorigenesis in transgenic mice. Semin. Cancer Biol. 5, 3–12 (1994).

    CAS  PubMed  Google Scholar 

  14. Lewandoski, M. Conditional control of gene expression in the mouse. Nature Rev. Genet. 2, 743–755 (2001).

    CAS  PubMed  Google Scholar 

  15. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    CAS  PubMed  Google Scholar 

  16. Berns, A. Turning on tumors to study cancer progression. Nature Med. 5, 989–990 (1999).

    CAS  PubMed  Google Scholar 

  17. Fisher, G. H. et al. Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18, 5253–5260 (1999).

    CAS  PubMed  Google Scholar 

  18. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  19. Chang, C. & Werb, Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  21. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  22. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).References 22 and 23 show that non-cell-autonomous factors, such as MMP-9 produced by inflammatory cells, actively participate in tumour formation. Interestingly, data in the latter study indicate that MMP-9 might promote the initial stages of tumour formation but inhibit later stages of tumour progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hann, B. & Balmain, A. Building 'validated' mouse models of human cancer. Curr. Opin. Cell Biol. 13, 778–784 (2001).

    CAS  PubMed  Google Scholar 

  25. Sherman, L., Wainwright, D., Ponta, H. & Herrlich, P. A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev. 12, 1058–1071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedman, L. S. et al. Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res. 58, 1338–1343 (1998).

    CAS  PubMed  Google Scholar 

  27. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 17, 423–430 (1997).

    CAS  PubMed  Google Scholar 

  28. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genet. 22, 37–43 (1999).

    CAS  PubMed  Google Scholar 

  29. Ludwig, T., Fisher, P., Murty, V. & Efstratiadis, A. Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20, 3937–3948 (2001).

    CAS  PubMed  Google Scholar 

  30. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet. 29, 418–425 (2001).References 28–30 show that conditional mutagenesis of Brca1 or Brca2 in mouse mammary-gland epithelium circumvents the embryonic lethality that is associated with germ-line mutations in these genes, and so allows modelling of hereditary breast cancer in mice. These conditional tumour models were subsequently used to establish a strong cooperation between Trp53 inactivation and loss of Brca1 (Ref. 28 ) or Brca2 (Ref. 30 ) in mammary tumorigenesis.

    CAS  PubMed  Google Scholar 

  31. Haase, V. H., Glickman, J. N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc. Natl Acad. Sci. USA 98, 1583–1588 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Marino, S., Vooijs, M., van Der, G. H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Meuwissen, R., Linn, S. C., van der Valk, M., Mooi, W. J. & Berns, A. Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20, 6551–6558 (2001).

    CAS  PubMed  Google Scholar 

  34. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).Describes the generation of a mouse strain in which an activated Kras2 mutant is stochastically expressed in somatic cells as a result of a spontaneous recombination event. The resulting mice develop lung cancers that are metastatic in a p53-deficient background.

    CAS  PubMed  Google Scholar 

  36. Federspiel, M. J., Bates, P., Young, J. A., Varmus, H. E. & Hughes, S. H. A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc. Natl Acad. Sci. USA 91, 11241–11245 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Holland, E. C. Gliomagenesis: genetic alterations and mouse models. Nature Rev. Genet. 2, 120–129 (2001).

    CAS  PubMed  Google Scholar 

  38. Dai, C. et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15, 1913–1925 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet. 25, 55–57 (2000).Describes the use of an in vivo transduction system using avian leukosis virus to introduce multiple mutations in neural cells and generate a mouse model for glioblastoma.

    CAS  PubMed  Google Scholar 

  40. Holland, E. C., Hively, W. P., DePinho, R. A. & Varmus, H. E. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 12, 3675–3685 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Orsulic, S. et al. Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1, 53–62 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, K., Ma, H., McCown, T. J., Verma, I. M. & Kafri, T. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. 3, 97–104 (2001).

    CAS  PubMed  Google Scholar 

  43. Baron, U. & Bujard, H. Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol. 327, 401–421 (2000).

    CAS  PubMed  Google Scholar 

  44. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    CAS  PubMed  Google Scholar 

  45. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    CAS  PubMed  Google Scholar 

  46. Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249–3262 (2001).References 45 and 46 validate activated Ras as a therapeutic target by showing that sustained expression of activated Kras2 is required for maintenance of lung tumours and melanomas, even in the presence of other oncogenic mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  48. Blyth, K. et al. Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycER mice. Oncogene 19, 773–782 (2000).

    CAS  PubMed  Google Scholar 

  49. Huettner, C. S., Zhang, P., Van Etten, R. A. & Tenen, D. G. Reversibility of acute B-cell leukaemia induced by BCR–ABL1. Nature Genet. 24, 57–60 (2000).

    CAS  PubMed  Google Scholar 

  50. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).References 49 and 50 validate activated Myc as a therapeutic target by showing that sustained expression is required for maintenance of skin tumours and leukaemias.

    CAS  PubMed  Google Scholar 

  51. Xie, W., Chow, L. T., Paterson, A. J., Chin, E. & Kudlow, J. E. Conditional expression of the ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFα expression in transgenic mice. Oncogene 18, 3593–3607 (1999).

    CAS  PubMed  Google Scholar 

  52. Tichelaar, J. W., Lu, W. & Whitsett, J. A. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J. Biol. Chem. 275, 11858–11864 (2000).

    CAS  PubMed  Google Scholar 

  53. Ewald, D. et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273, 1384–1386 (1996).

    CAS  PubMed  Google Scholar 

  54. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    CAS  PubMed  Google Scholar 

  55. Mao, X., Fujiwara, Y. & Orkin, S. H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl Acad. Sci. USA 96, 5037–5042 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S. H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001).

    CAS  PubMed  Google Scholar 

  57. Awatramani, R., Soriano, P., Mai, J. J. & Dymecki, S. An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Nature Genet. 29, 257–259 (2001).

    CAS  PubMed  Google Scholar 

  58. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl Acad. Sci. USA 98, 9209–9214 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Silver, D. P. & Livingston, D. M. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol. Cell 8, 233–243 (2001).

    CAS  PubMed  Google Scholar 

  60. Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S. & Capecchi, M. R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl Acad. Sci. USA 97, 13702–13707 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pfeifer, A., Brandon, E. P., Kootstra, N., Gage, F. H. & Verma, I. M. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc. Natl Acad. Sci. USA 98, 11450–11455 (2001).References 58–61 document Cre-associated cytotoxicity in cultured cells and mice, and illustrate the need for carefully controlled experiments and the use of regulatable or self-inactivating Cre expression systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Thyagarajan, B., Guimaraes, M. J., Groth, A. C. & Calos, M. P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    CAS  PubMed  Google Scholar 

  63. Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2, 292–297 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jo, D. et al. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat. Biotechnol. 19, 929–933 (2001).

    CAS  PubMed  Google Scholar 

  65. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    CAS  PubMed  Google Scholar 

  66. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998).

    CAS  PubMed  Google Scholar 

  67. Liyanage, M. et al. Multicolour spectral karyotyping of mouse chromosomes. Nature Genet. 14, 312–315 (1996).

    CAS  PubMed  Google Scholar 

  68. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genet. 24, 381–386 (2000).

    CAS  PubMed  Google Scholar 

  69. Shi, Y. P. et al. DNA copy number changes associated with characteristic LOH in islet cell carcinomas of transgenic mice. Genes Chromosom. Cancer 19, 104–111 (1997).

    CAS  PubMed  Google Scholar 

  70. Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nature Genet. 29, 459–464 (2001).

    CAS  PubMed  Google Scholar 

  71. Graveel, C. R., Jatkoe, T., Madore, S. J., Holt, A. L. & Farnham, P. J. Expression profiling and identification of novel genes in hepatocellular carcinomas. Oncogene 20, 2704–2712 (2001).

    CAS  PubMed  Google Scholar 

  72. Kerlavage, A. et al. The Celera Discovery System. Nucleic Acids Res. 30, 129–136 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Benson, D. A. et al. GenBank. Nucleic Acids Res. 30, 17–20 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hubbard, T. et al. The Ensembl genome database project. Nucleic Acids Res. 30, 38–41 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liyanage, M. et al. Abnormal rearrangement within the α/δ T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96, 1940–1946 (2000).

    CAS  PubMed  Google Scholar 

  76. Zimonjic, D. B., Pollock, J. L., Westervelt, P., Popescu, N. C. & Ley, T. J. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc. Natl Acad. Sci. USA 97, 13306–13311 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    CAS  PubMed  Google Scholar 

  78. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).

    CAS  Google Scholar 

  79. Vooijs, M., Jonkers, J., Lyons, S. & Berns, A. Non-invasive imaging of spontaneous Rb pathway-dependent tumors in mice. Cancer Res. 62, 1862–1867 (2002).

    CAS  PubMed  Google Scholar 

  80. Gonzalez, F. J. & Kimura, S. Role of gene knockout mice in understanding the mechanisms of chemical toxicity and carcinogenesis. Cancer Lett. 143, 199–204 (1999).

    CAS  PubMed  Google Scholar 

  81. Fischer, S. E., Wienholds, E. & Plasterk, R. H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl Acad. Sci. USA 98, 6759–6764 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ostertag, E. M., DeBerardinis, R. J., Kim, K.-S., Gerton, G. & Kazazian, H. H. Jr. Human L1 retrotransposition in germ cells of transgenic mice. Am. J. Hum. Genet. 67, A102 (2000).

    Google Scholar 

  83. Jonkers, J. & Berns, A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim. Biophys. Acta 1287, 29–57 (1996).

    PubMed  Google Scholar 

  84. Allen, J. D. & Berns, A. Complementation tagging of cooperating oncogenes in knockout mice. Semin. Cancer Biol. 7, 299–306 (1996).

    CAS  PubMed  Google Scholar 

  85. Berns, A. et al. Identification and characterization of collaborating oncogenes in compound mutant mice. Cancer Res. 59, S1773–S1777 (1999). | PubMed |

    Google Scholar 

  86. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000).

    CAS  PubMed  Google Scholar 

  87. Balmain, A. & Harris, C. C. Carcinogenesis in mouse and human cells: parallels and paradoxes. Carcinogenesis 21, 371–377 (2000).

    CAS  PubMed  Google Scholar 

  88. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  PubMed  Google Scholar 

  89. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    CAS  PubMed  Google Scholar 

  90. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  91. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet. 28, 155–159 (2001).

    CAS  PubMed  Google Scholar 

  92. Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617–1630 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Vooijs, M., van der Valk, M., te, R. H. & Berns, A. Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. Oncogene 17, 1–12 (1998).

    CAS  PubMed  Google Scholar 

  94. Holland, E. C. et al. Astrocytes give rise to oligodendro-gliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am. J. Pathol. 157, 1031–1037 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mak, T. W. et al. Brcal required for T cell lineage development but not TCR loci rearrangement. Nature Immunol. 1, 77–82 (2000).

    CAS  Google Scholar 

  96. Zhu, Y. et al. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15, 859–876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  98. Feil, R. et al. Ligand-activated site-specific recombination in mice. Proc. Natl Acad. Sci. USA 93, 10887–10890 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Akagi, K. et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 25, 1766–1773 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lallemand-Breitenbach, V. et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 189, 1043–1052 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rego, E. M., He, L. Z., Warrell, R. P. Jr, Wang, Z. G. & Pandolfi, P. P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins. Proc. Natl Acad. Sci. USA 97, 10173–10178 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bearss, D. J. et al. Genetic determinants of response to chemotherapy in transgenic mouse mammary and salivary tumors. Oncogene 19, 1114–1122 (2000).

    CAS  PubMed  Google Scholar 

  103. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4A/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nature Med. 6, 1029–1035 (2000).

    CAS  PubMed  Google Scholar 

  105. Menard, S. et al. Tamoxifen chemoprevention of a hormone-independent tumor in the proto-neu transgenic mice model. Cancer Res. 60, 273–275 (2000).

    CAS  PubMed  Google Scholar 

  106. Jacoby, R. F. et al. Chemoprevention of spontaneous intestinal adenomas in the ApcMin mouse model by the nonsteroidal anti-inflammatory drug piroxicam. Cancer Res. 56, 710–714 (1996).

    CAS  PubMed  Google Scholar 

  107. Torrance, C. J. et al. Combinatorial chemoprevention of intestinal neoplasia. Nature Med. 6, 1024–1028 (2000).

    CAS  PubMed  Google Scholar 

  108. Gupta, S. et al. Chemoprevention of prostate carcinogenesis by α-difluoromethylornithine in TRAMP mice. Cancer Res. 60, 5125–5133 (2000).

    CAS  PubMed  Google Scholar 

  109. Raghow, S., Kuliyev, E., Steakley, M., Greenberg, N. & Steiner, M. S. Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Cancer Res. 60, 4093–4097 (2000).

    CAS  PubMed  Google Scholar 

  110. Arbeit, J. M. et al. Difluoromethylornithine chemoprevention of epidermal carcinogenesis in K14-HPV16 transgenic mice. Cancer Res. 59, 3610–3620 (1999).

    CAS  PubMed  Google Scholar 

  111. Kohl, N. E. et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in Ras transgenic mice. Nature Med. 1, 792–797 (1995).

    CAS  PubMed  Google Scholar 

  112. Barrington, R. E. et al. A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol. Cell Biol. 18, 85–92 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mangues, R. et al. Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res. 58, 1253–1259 (1998).

    CAS  PubMed  Google Scholar 

  114. Norgaard, P. et al. Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF)α and TGFα/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin. Cancer Res. 5, 35–42 (1999).

    CAS  PubMed  Google Scholar 

  115. Mahgoub, N. et al. In vitro and in vivo effects of a farnesyltransferase inhibitor on Nf1-deficient hematopoietic cells. Blood 94, 2469–2476 (1999).

    CAS  PubMed  Google Scholar 

  116. Omer, C. A. et al. Mouse mammary tumor virus-Ki-rasB transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res. 60, 2680–2688 (2000).

    CAS  PubMed  Google Scholar 

  117. Trempus, C. S. et al. A farnesyl transferase inhibitor suppresses TPA-mediated skin tumor development without altering hyperplasia in the ras transgenic Tg. AC mouse. Mol. Carcinog. 27, 24–33 (2000).

    CAS  PubMed  Google Scholar 

  118. Reichert, A., Heisterkamp, N., Daley, G. Q. & Groffen, J. Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood 97, 1399–1403 (2001).

    CAS  PubMed  Google Scholar 

  119. Lenferink, A. E. et al. Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu + MMTV/TGF-α bigenic mice. Proc. Natl Acad. Sci. USA 97, 9609–9614 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    CAS  PubMed  Google Scholar 

  122. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999).

    CAS  PubMed  Google Scholar 

  123. Boehm, T., Folkman, J., Browder, T. & O'reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose relevant contributions to the field could not be cited owing to space constraints. We thank P. Krimpenfort, A. Loonstra, R. Meuwissen and K. Quon for critical reading of the manuscript. Our studies reviewed in this article were supported by the Dutch Cancer Society and the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Berns.

Related links

Related links

DATABASES

Cancer.gov

brain tumour

breast cancer

colon cancer

hepatocellular carcinoma

melanoma

non-small-cell lung cancer

ovarian cancer

GenBank

TAg

LocusLink

ABL

actin

Akt

Apc

BCR

Blm

Brca1

BRCA1

Brca2

BRCA2

CD44

CDK4

Cdkn2a

cyclin D1

EGFR

ErbB2

ERT

FGF7

FGF8

GFAP

Kras2

MMP-9

MuLV

Myc

MYC

nestin

Nf1

Nf2

PDGF

PLAP

POMC

Pten

Rb

ROSA26

Trp53

Vhl

WAP

Medscape DrugInfo

doxorubicin

tamoxifen

FURTHER READING

Anton Berns' lab

Biology of the mammary gland

Cre transgenic and floxed gene database

Mouse Models for Human Cancer Consortium (MMHCC) homepage

Mouse Tumor Biology (MTB) database

Online version of Lee Silver's 'Mouse Genetics'

RCAS homepage

TVA homepage

Glossary

PRISTANE

A carcinogenic saturated hydrocarbon (2,6,10,14-tetramethylpentadecane) that is purified from mineral oil.

PROVIRUS

The duplex DNA form of the retroviral genome. The provirus is produced by reverse transcription of the RNA genome and is subsequently integrated into the chromosomal DNA of the infected host cell.

HOMOLOGOUS RECOMBINATION

The process by which segments of DNA are exchanged between two DNA duplexes that share high sequence similarity.

K14–HPV16

A transgenic mouse strain that expresses the human papillomavirus type 16 (HPV16) early-region genes, including the E6 and E7 oncogenes, under the control of the human keratin-14 promoter (K14), in basal keratinocytes. Invasive squamous carcinomas of the epidermis develop through characteristic stages.

APICAL ECTODERMAL RIDGE

(AER). The layer of surface ectodermal cells that is at the apex of the embryonic limb bud. This layer exerts an inductive influence on the condensation of the underlying mesenchyme.

MESENCHYME

Embryonic tissue that is composed of loosely organized, unpolarized cells of both mesodermal and ectodermal (for example, neural crest) origin, with a proteoglycan-rich extracellular matrix.

HYPOMORPHIC ALLELE

An allele that results in a reduction, but not the elimination, of wild-type levels of gene product or activity, often causing a less severe phenotype than a loss-of-function (or null) allele.

MEDULLOBLASTOMA

A brain tumour that consists of cells resembling the undifferentiated cells of the primitive medullary tube. Medulloblastomas are often located in the vermis of the cerebellum.

EXTERNAL GRANULAR LAYER

The deepest of the three layers in the cerebellar cortex. It contains large numbers of granule cells, the dendrites of which form synapses with incoming mossy fibres in cerebellar glomeruli. The axons of the granule cells ascend into the molecular layer in which they bifurcate into fibres that form numerous synapses with the dendrites of Purkinje cells, basket cells and stellate cells.

TRANSCRIPTIONAL TERMINATOR

A specific DNA sequence, represented at the end of a gene, that causes RNA polymerase to terminate transcription.

ADENOVIRAL VECTOR

A gene-therapy vector that is derived from an adenovirus. Genes necessary for replication of the virus can be deleted to make replication-defective vectors.

HERPES SIMPLEX VIRUS VP16

A potent transcriptional activator protein of herpes simplex virus. Various chimeric sequence-specific transcriptional activators have been engineered by fusing the VP16 transcriptional activation domain to the sequence-specific DNA-binding domains of other proteins.

PAPILLOMATOSIS

Papillary projections of the epidermis that form a microscopically undulating surface.

FORWARD SCREENS

Genetic screens that employ genome-wide saturation mutagenesis to obtain specific mutant phenotypes. The causal mutations can be subsequently identified by genetic and/or molecular approaches.

ATAXIA-TELENGIECTASIA MUTATED

(ATM). Germ-line mutations in the ATM gene — involved in the DNA-damage response — are responsible for ataxia-telangiectasia/Louis–Bar syndrome, a familial recessive disease that is characterized by progressive cerebellar ataxia, oculocutaneous telangiectases and susceptibility to pulmonary infections.

PML–RARα AND RARα–PML

Protein fusions between the promyelocytic leukaemia tumour suppressor (PML) and the retinoic-acid receptor-α (RARα). The fusion genes are associated with human acute promyelocytic leukaemias and are generated by reciprocal translocations of chromosomes 15 and 17.

RIP-TAg

A transgenic mouse strain that expresses the simian virus 40 large T antigen (TAg) under the rat insulin II promoter (RIP) in the pancreatic islet cells. Carcinomas develop in the pancreatic islets and progress through characteristic stages.

TELOMERE CRISIS

State of cells in which the progressive shortening of telomeres during successive cell divisions has impaired their capacity to protect the ends of chromosomal DNA, leading to end-to-end fusions and genomic instability.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonkers, J., Berns, A. Conditional mouse models of sporadic cancer. Nat Rev Cancer 2, 251–265 (2002). https://doi.org/10.1038/nrc777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing