Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RET revisited: expanding the oncogenic portfolio

Key Points

  • The RET receptor tyrosine kinase is required for the development of neural and genitourinary tissues, but deregulation of RET activity is an important contributor to several human cancers.

  • Activating point mutations in key functional motifs cause the inherited cancer syndrome multiple endocrine neoplasia type 2. RET rearrangements that lead to constitutively active cytosolic chimeric proteins occur somatically in sporadic carcinomas of the thyroid and the lung, and they have recently been found in patients with chronic myelomonocytic leukaemia, among others.

  • Expression and activation of wild-type RET is recognized in several tumour types, where it can contribute to tumour progression by multiple mechanisms. RET activity increases tumour regional invasion and perineural spread in carcinoma of the pancreas, and it is associated with the development of resistance to endocrine therapies in breast carcinoma.

  • RET activity contributes to tumour-associated inflammation by increasing levels of pro-inflammatory cytokines and chemokines in the tumour microenvironment, thereby recruiting primary immune cells and promoting tumour growth, invasive spread and/or distant metastasis.

  • Therapeutic approaches that target RET with small-molecule kinase inhibitors have proved to be clinically valuable in medullary thyroid cancer and are being evaluated for other cancers that are associated with RET mutations or increased RET expression.

  • Although anti-RET therapeutics are an important advance in managing RET-associated malignancies, RET also has important roles in the survival and maintenance of other tissues, such as neural cell types, which might have long-term implications for extended use of these therapies.

Abstract

The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers — most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RET receptor tyrosine kinase.
Figure 2: RET receptor interactions and signal transduction network.
Figure 3: Oncogenic mutations of RET.
Figure 4: Molecular mechanisms of oncogenic RET mutations.
Figure 5: Contributions of the RET receptor to tumorigenesis.

Similar content being viewed by others

References

  1. Ishizaka, Y. et al. Human ret proto-oncogene mapped to 10q11.2. Oncogene 4, 1519–1521 (1989).

    CAS  PubMed  Google Scholar 

  2. Andrew, S. D. et al. Transcriptional repression of the RET proto-oncogene by a mitogen activated protein kinase-dependent signalling pathway. Gene 298, 9–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Leon, T. Y. et al. Transcriptional regulation of RET by Nkx2-1, Phox2b, Sox10, and Pax3. J. Pediatr. Surg. 44, 1904–1912 (2009).

    Article  PubMed  Google Scholar 

  4. Lang, D. & Epstein, J. A. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum. Mol. Genet. 12, 937–945 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, J., Garcia-Barcelo, M. M., Tam, P. K. & Lui, V. C. HOXB5 cooperates with NKX2-1 in the transcription of human RET. PLoS ONE 6, e20815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeanpierre, C. et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J. Med. Genet. 48, 497–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Diaz-Beya, M. et al. Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia 27, 595–603 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Yamaga, R. et al. RNA sequencing of MCF-7 breast cancer cells identifies novel estrogen-responsive genes with functional estrogen receptor-binding sites in the vicinity of their transcription start sites. Horm. Cancer 4, 222–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, C., Mayer, J. A., Mazumdar, A. & Brown, P. H. The rearranged during transfection/papillary thyroid carcinoma tyrosine kinase is an estrogen-dependent gene required for the growth of estrogen receptor positive breast cancer cells. Breast Cancer Res. Treat. 133, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Myers, S. M., Eng, C., Ponder, B. A. J. & Mulligan, L. M. Characterization of RET proto-oncogene 3′ splicing variants and polyadenylation sites: a novel C terminus for RET. Oncogene 11, 2039–2045 (1995).

    CAS  PubMed  Google Scholar 

  12. Tahira, T., Ishizaka, Y., Itoh, F., Sugimura, T. & Nagao, M. Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene 5, 97–102 (1990).

    CAS  PubMed  Google Scholar 

  13. Carter, M. T. et al. Conservation of RET proto-oncogene splicing variants and implications for RET isoform function. Cytogenet. Cell Genet. 95, 169–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, M. et al. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3, 571–578 (1988).

    CAS  PubMed  Google Scholar 

  15. Anders, J., Kjar, S. & Ibanez, C. F. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J. Biol. Chem. 276, 35808–35817 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kjaer, S., Hanrahan, S., Totty, N. & McDonald, N. Q. Mammal-restricted elements predispose human RET to folding impairment by HSCR mutations. Nature Struct. Mol. Biol. 17, 726–731 (2010).

    Article  CAS  Google Scholar 

  17. Amoresano, A. et al. Direct interactions among Ret, GDNF and GFRα1 molecules reveal new insights into the assembly of a functional three-protein complex. Cell. Signal. 17, 717–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, X. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochim. Biophys. Acta 1834, 2205–2212 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Richardson, D. S. et al. Alternative splicing results in RET isoforms with distinct trafficking properties. Molec Biol. Cell 23, 3838–3850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Runeberg-Roos, P., Virtanen, H. & Saarma, M. RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface. Oncogene 26, 7909–7915 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. van Weering, D. H., Moen, T. C., Braakman, I., Baas, P. D. & Bos, J. L. Expression of the receptor tyrosine kinase Ret on the plasma membrane is dependent on calcium. J. Biol. Chem. 273, 12077–12081 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Hirata, Y., Shimokawa, N., Oh-hashi, K., Yu, Z. X. & Kiuchi, K. Acidification of the Golgi apparatus is indispensable for maturation but not for cell surface delivery of Ret. J. Neurochem. 115, 606–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arighi, E., Borrello, M. G. & Sariola, H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 16, 441–467 (2005). This is an excellent in-depth review of RET-mediated downstream signalling.

    Article  CAS  PubMed  Google Scholar 

  24. Tansey, M. G., Baloh, R. H., Milbrandt, J. & Johnson, E. M. GFRα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25, 611–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Airaksinen, M. S., Holm, L. & Hatinen, T. Evolution of the GDNF family ligands and receptors. Brain Behav. Evol. 68, 181–190 (2006).

    Article  PubMed  Google Scholar 

  27. Schalm, S. S., Ballif, B. A., Buchanan, S. M., Phillips, G. R. & Maniatis, T. Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret. Proc. Natl. Acad. Sci. USA 107, 13894–13899 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cockburn, J. G., Richardson, D. S., Gujral, T. S. & Mulligan, L. M. RET-mediated cell adhesion and migration require multiple integrin subunits. J. Clin. Endocrinol. Metab. 95, E342–E346 (2010).

    Article  PubMed  Google Scholar 

  29. Bonanomi, D. et al. Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 148, 568–582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tufro, A., Teichman, J., Banu, N. & Villegas, G. Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem. Biophys. Res. Commun. 358, 410–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Esposito, C. L., D'Alessio, A., de Franciscis, V. & Cerchia, L. A cross-talk between TrkB and Ret tyrosine kinases receptors mediates neuroblastoma cells differentiation. PLoS ONE 3, e1643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Popsueva, A. et al. GDNF promotes tubulogenesis of GFRα1-expressing MDCK cells by Src-mediated phosphorylation of Met receptor tyrosine kinase. J. Cell Biol. 161, 119–129 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibanez, C. F. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb. Perspect. Biol. 5, a009134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayashi, H. et al. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 19, 4469–4475 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Besset, V., Scott, R. P. & Ibanez, C. F. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J. Biol. Chem. 275, 39159–39166 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. De Vita, G. & Melillo, R. Tyrosine 1062 of RET-MEN2A mediates activation of Akt (protein kinase B) and mitogen-activated protein kinase pathways leading to PC12 cell survival. Cancer Res. 60, 3727–3731 (2000).

    CAS  PubMed  Google Scholar 

  37. Coulpier, M., Anders, J. & Ibanez, C. F. Coordinated activation of autophosphorylation sites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF mediated neuronal differentiation and survival. J. Biol. Chem. 277, 1991–1999 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Segouffin-Cariou, C. & Billaud, M. Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-Kinase/AKT signaling pathway. J. Biol. Chem. 275, 3568–3576 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Jain, S., Encinas, M., Johnson, E. M. Jr. & Milbrandt, J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 20, 321–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borrello, M. G. et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc. Natl Acad. Sci. USA 102, 14825–14830 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jijiwa, M. et al. GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes Cells 13, 365–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Borrello, M. G. et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cγ. Mol. Cell. Biol. 16, 2151–2163 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lundgren, T. K. et al. RET PLCγ phosphotyrosine binding domain regulates Ca2+ signaling and neocortical neuronal migration. PLoS ONE 7, e31258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Encinas, M., Crowder, R. J., Milbrandt, J. & Johnson, E. M. Tyrosine 981, a novel Ret autophosphorylation site, binds c-Src to mediate neuronal survival. J. Biol. Chem. 279, 18262–18269 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Melillo, R. M. et al. Ret-mediated mitogenesis requires Src kinase activity. Cancer Res. 59, 1120–1126 (1999).

    CAS  PubMed  Google Scholar 

  46. Schuringa, J. J. et al. MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene 20, 5350–5358 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Plaza-Menacho, I. et al. Ras/ERK1/2-mediated STAT3 Serine 727 phosphorylation by familiar medullary thyroid carcinoma-associated RET mutants induces full activation of STAT3 and is required for c-fos promoter activation, cell mitogenicity and transformation. J. Biol. Chem. 282, 6415–6424 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Fukuda, T., Kiuchi, K. & Takahashi, M. Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J. Biol. Chem. 277, 19114–19121 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Perrinjaquet, M., Vilar, M. & Ibanez, C. F. Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase. J. Biol. Chem. 285, 31867–31875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Asai, N. et al. Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development 133, 4507–4516 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Plaza-Menacho, I. et al. Focal adhesion kinase (FAK) binds RET kinase via its FERM domain, priming a direct and reciprocal RET-FAK transactivation mechanism. J. Biol. Chem. 286, 17292–17302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gujral, T. S. et al. A novel RET kinase-β-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res. 68, 1338–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Castellone, M. D. et al. The β-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res. 69, 1867–1876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borrello, M. G. et al. Differential interaction of Enigma protein with the two RET isoforms. Biochem. Biophys. Res. Commun. 296, 515–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Schuetz, G. et al. The neuronal scaffold protein Shank3 mediates signaling and biological function of the receptor tyrosine kinase Ret in epithelial cells. J. Cell Biol. 167, 945–952 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wong, A. et al. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol. Cell. Biol. 25, 9661–9673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pachnis, V., Mankoo, B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005–1017 (1993).

    CAS  PubMed  Google Scholar 

  58. Tsuzuki, T. et al. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10, 191–198 (1995).

    CAS  PubMed  Google Scholar 

  59. Schuchardt, A., D'Agati, V., Pachnis, V. & Costantini, F. Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

    CAS  PubMed  Google Scholar 

  60. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Davis, T. K., Hoshi, M. & Jain, S. To bud or not to bud: the RET perspective in CAKUT. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-013-2606-5 (2013).

  62. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Naughton, C. K., Jain, S., Strickland, A. M., Gupta, A. & Milbrandt, J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol. Reprod. 74, 314–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F. & Pachnis, V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122, 349–358 (1996).

    CAS  PubMed  Google Scholar 

  65. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994). This paper describes the first animal model to elucidate biological functions of RET.

    Article  CAS  PubMed  Google Scholar 

  66. Avantaggiato, V. et al. Developmental expression of the RET protooncogene. Cell Growth Differ. 5, 305–311 (1994).

    CAS  PubMed  Google Scholar 

  67. de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 15, 2433–2444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pierchala, B. A., Milbrandt, J. & Johnson, E. M. Jr. Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J. Neurosci. 26, 2777–2787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paratcha, G. & Ledda, F. GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci. 31, 384–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Gattei, V. et al. Expression of the RET receptor tyrosine kinase and GDNFR-a in normal and leukemic human hematopoietic cells and stromal cells of the bone marrow microenvironment. Blood 89, 2925–2937 (1997).

    CAS  PubMed  Google Scholar 

  71. Vargas-Leal, V. et al. Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells. J. Immunol. 175, 2301–2308 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Rusmini, M. et al. Induction of RET dependent and independent pro-inflammatory programs in human peripheral blood mononuclear cells from Hirschsprung patients. PLoS ONE 8, e59066 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patel, A. et al. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci. Signal., 5, ra55 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review. J. Med. Genet. 45, 1–14 (2008). This is a comprehensive review of loss-of-function RET mutations in HSCR.

    Article  CAS  PubMed  Google Scholar 

  76. Chatterjee, R. et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum. Genet. 131, 1725–1738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prato, A. P. et al. Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT) a novel syndromic association. Medicine 88, 83–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Jain, S. The many faces of RET dysfunction in kidney. Organogenesis 5, 177–190 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hwang, D. Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. http://dx.doi.org/10.1038/ki.2013.508 (2014).

  80. Donis-Keller, H. et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum. Mol. Genet. 2, 851–856 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Hofstra, R. M. W. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Verga, U. et al. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin. Endocrinol. 59, 156–161 (2003).

    Article  CAS  Google Scholar 

  84. Kloos, R. T. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19, 565–612 (2009).

    Article  PubMed  Google Scholar 

  85. Brandi, M. L. et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 86, 5658–5671 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Brauckhoff, M. et al. Surgical curability of medullary thyroid cancer in multiple endocrine neoplasia 2B: a changing perspective. Ann. Surg. http://dx.doi.org/10.1097/SLA.0b013e3182a6f43a (2013).

  87. Choi, S. K., Yoon, S. R., Calabrese, P. & Arnheim, N. Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet. 8, e1002420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carlson, K. et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am. J. Hum. Genet. 55, 1076–1082 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Margraf, R. L. et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum. Mutat. 30, 548–556 (2009). This paper describes a database of RET mutations and phenotypes, which is an important clinical and biological resource.

    Article  CAS  PubMed  Google Scholar 

  90. Wells, S. A. Jr., Pacini, F., Robinson, B. G. & Santoro, M. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J. Clin. Endocrinol. Metab. 98, 3149–3164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mulligan, L. M. et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nature Genet. 6, 70–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: International RET Mutation Consortium. JAMA. 276, 1575–1579 (1996). References 91–92 provide the first evidence of genotype–phenotype associations in MEN2, which have important implications for patient management.

    Article  CAS  PubMed  Google Scholar 

  93. Asai, N., Iwashita, T., Matsuyama, M. & Takahashi, M. Mecahanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol. Cell. Biol. 15, 1613–1619 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Quayle, F. J., Fialkowski, E. A., Benveniste, R. & Moley, J. F. Pheochromocytoma penetrance varies by RET mutation in MEN 2A. Surgery 142, 800–805 (2007).

    Article  PubMed  Google Scholar 

  95. Arighi, E. et al. Biological effects of the dual phenotypic Janus mutation of ret cosegregating with both multiple endocrine neoplasia type 2 and Hirschsprung's disease. Mol. Endocrinol. 18, 1004–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Takahashi, M. et al. Co-segregation of MEN2 and Hirschsprung's disease: the same mutation of RET with both gain and loss-of-function? Hum. Mutat. 13, 331–336 (1999). This paper proposes mechanisms of loss-of-function and gain-of-function by a single RET mutation that provide insights into tissue-specific requirements for RET activity.

    Article  CAS  PubMed  Google Scholar 

  97. Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G1–G24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frank-Raue, K. et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum. Mutat. 32, 51–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Mulligan, L. M. et al. Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum. Mol. Genet. 3, 2163–2167 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Gujral, T. S., Singh, V. K., Jia, Z. & Mulligan, L. M. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res. 66, 10741–10749 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Knowles, P. P. et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem. 281, 33577–33587 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Jasim, S. et al. Multiple endocrine neoplasia type 2B with a RET proto-oncogene A883F mutation displays a more indolent form of medullary thyroid carcinoma compared with a RET M918T mutation. Thyroid, 21, 189–192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eng, C. et al. Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res. 56, 2167–2170 (1996).

    CAS  PubMed  Google Scholar 

  105. Machens, A. & Dralle, H. Familial prevalence and age of RET germline mutations: implications for screening. Clin. Endocrinol. 69, 81–87 (2008).

    Article  CAS  Google Scholar 

  106. Bihan, H. et al. The clinical spectrum of RET proto-oncogene mutations in codon 790. Eur. J. Endocrinol. 169, 271–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Schulte, K. M. et al. The clinical spectrum of multiple endocrine neoplasia type 2a caused by the rare intracellular RET mutation S891A. J. Clin. Endocrinol. Metab. 95, E92–E97 (2010).

    Article  PubMed  Google Scholar 

  108. Signorini, P. S. et al. A ten-year clinical update of a large RET p. Gly533Cys kindred with medullary thyroid carcinoma emphasizes the need for an individualized assessment of affected relatives. Clin. Endocrinol. 80, 235–245 (2014).

    Article  CAS  Google Scholar 

  109. Carlomagno, F. et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene 23, 6056–6063 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Plaza Menacho, I. et al. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res. 65, 1729–1737 (2005).

    Article  PubMed  Google Scholar 

  111. Iwashita, T. et al. Biological and biochemical properties of Ret with kinase domain mutations identified in multiple endocrine neoplasia type 2B and familial medullary thyroid carcinoma. Oncogene 18, 3919–3922 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Nakao, K. T. et al. Novel tandem germline RET proto-oncogene mutations in a patient with multiple endocrine neoplasia type 2B: report of a case and a literature review of tandem RET mutations with in silico analysis. Head Neck 35, E363–E368 (2013).

    Article  PubMed  Google Scholar 

  113. Cranston, A. N. et al. RET is constitutively activated by novel tandem mutations that alter the active site resulting in multiple endocrine neoplasia type 2B. Cancer Res. 66, 10179–10187 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Lantieri, F., Caroli, F., Ceccherini, I. & Griseri, P. The involvement of the RET variant G691S in medullary thyroid carcinoma enlightened by a meta-analysis study. Int. J. Cancer 132, 2808–2819 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Sawai, H. et al. The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res. 65, 11536–11544 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Narita, N. et al. Functional RET G691S polymorphism in cutaneous malignant melanoma. Oncogene 28, 3058–3068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barr, J., Amato, C. M., Robinson, S. E., Kounalakis, N. & Robinson, W. A. The RET G691S polymorphism is a germline variant in desmoplastic malignant melanoma. Melanoma Res. 22, 92–95 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Robledo, M. et al. Polymorphisms G691S/S904S of RET as genetic modifiers of MEN 2A. Cancer Res. 63, 1814–1817 (2003).

    CAS  PubMed  Google Scholar 

  119. Borrello, M. G. et al. Functional characterization of the MTC-associated germline RET-K666E mutation: evidence of oncogenic potential enhanced by the G691S polymorphism. Endocr. Relat. Cancer 18, 519–527 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Erlic, Z. et al. Pathogenicity of DNA variants and double mutations in multiple endocrine neoplasia type 2 and von Hippel-Lindau syndrome. J. Clin. Endocrinol. Metab. 95, 308–313 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Berndt, I. et al. A new hot spot for mutations in the ret protooncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2A. J. Clin. Endocrinol. Metab. 83, 770–774 (1998).

    CAS  PubMed  Google Scholar 

  122. Seri, M. et al. Frequency of RET mutations in long- and short-segment Hirschsprung disease. Hum. Mutat. 9, 243–249 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Cosci, B. et al. In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer. Endocr. Relat. Cancer 18, 603–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Hyndman, B. D., Gujral, T. S., Krieger, J. R., Cockburn, J. G. & Mulligan, L. M. Multiple functional effects of RET kinase domain sequence variants in Hirschsprung disease. Hum. Mutat. 34, 132–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Mise, N., Drosten, M., Racek, T., Tannapfel, A. & Putzer, B. M. Evaluation of potential mechanisms underlying genotype-phenotype correlations in multiple endocrine neoplasia type 2. Oncogene 25, 6637–6647 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Toledo, R. A. et al. High penetrance of pheochromocytoma associated with the novel C634Y/Y791F double germline mutation in the RET protooncogene. J. Clin. Endocrinol. Metab. 95, 1318–1327 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Valente, F. O. et al. Comprehensive analysis of RET gene should be preformed in patients with MEN 2 syndrome and no apparent genotype-phenotype correlation: an appraisal of p. Y791F and p. C634Y RET mutations in five unrelated Brazilian families. J. Endocrinol. Invest. 36, 975–981 (2013).

    CAS  PubMed  Google Scholar 

  128. Romei, C. & Elisei, R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front. Endocrinol. 3, 54 (2012).

    Article  CAS  Google Scholar 

  129. Romei, C. et al. Modifications in the papillary thyroid cancer gene profile over the last 15 years. J. Clin. Endocrinol. Metab. 97, E1758–E1765 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Leeman-Neill, R. J. et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer 119, 1792–1799 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Hamatani, K. et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. 68, 7176–7182 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Bounacer, A. et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15, 1263–1273 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000). References 130–133 describe the contributions and mechanisms of environmental radiation exposure to RET rearrangements in PTC.

    Article  CAS  PubMed  Google Scholar 

  134. Dillon, L. W., Pierce, L. C., Lehman, C. E., Nikiforov, Y. E. & Wang, Y. H. DNA topoisomerases participate in fragility of the oncogene RET. PLoS ONE 8, e75741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13, 184–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Richardson, D. S., Gujral, T. S., Peng, S., Asa, S. L. & Mulligan, L. M. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res. 69, 4861–4869 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Kohno, T. et al. KIF5B-RET fusions in lung adenocarcinoma. Nature Med. 18, 375–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Li, F. et al. Identification of RET gene fusion by exon array analyses in “pan-negative” lung cancer from never smokers. Cell Res. 22, 928–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lipson, D. et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nature Med. 18, 382–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nature Med. 18, 378–381 (2012). References 137–140 highlight recent findings on chimeric RET proteins as oncogenes in carcinoma of the lung.

    Article  CAS  PubMed  Google Scholar 

  141. Drilon, A. et al. Response to Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas. Cancer Discov. 3, 630–635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, R. et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol. 30, 4352–4359 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Nakayama, S. et al. Implication of expression of GDNF/Ret signalling components in differentiation of bone marrow haemopoietic cells. Br. J. Haematol. 105, 50–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Kohlmann, A. et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J. Clin. Oncol. 28, 3858–3865 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Ballerini, P. et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 26, 2384–2389 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Ito, Y. et al. Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138, 788–794 (2005).

    Article  PubMed  Google Scholar 

  147. Zeng, Q. et al. The relationship between overexpression of glial cell-derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer. J. Int. Med. Res. 36, 656–664 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Gil, Z. et al. Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J. Natl Cancer Inst. 102, 107–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Veit, C. et al. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res. 64, 5291–5300 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Cavel, O. et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 72, 5733–5743 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Plaza-Menacho, I. et al. Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene 29, 4648–4657 (2010). This is an important demonstration of the contributions of RET expression to breast cancer tumorigenesis and endocrine resistance.

    Article  CAS  PubMed  Google Scholar 

  152. Esseghir, S. et al. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR α 1 receptor up-regulation in breast cancer. Cancer Res. 67, 11732–11741 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Morandi, A. et al. GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res. 73, 3783–3795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gattelli, A. et al. Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol. Med. 5, 1335–1350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kang, J. et al. Artemin is oncogenic for human mammary carcinoma cells. Oncogene 28, 2034–2045 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Boulay, A. et al. The Ret receptor tyrosine kinase pathway functionally interacts with the ERα pathway in breast cancer. Cancer Res. 68, 3743–3751 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Gattei, V. et al. Differential expression of the RET gene in human acute myeloid leukemia. Ann. Hematol. 77, 207–210 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Camos, M. et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res. 66, 6947–6954 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Mulligan, L. M. et al. Investigation of the genes for RET and its ligand complex GDNF/GFRa-1 in small cell lung carcinoma. Genes Chromosomes Cancer 21, 326–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Flavin, R. et al. RET protein expression in papillary renal cell carcinoma. Urol. Oncol. 30, 900–905 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Dawson, D. M. et al. Altered expression of RET proto-oncogene product in prostatic intraepithelial neoplasia and prostate cancer. J. Natl Cancer Inst. 90, 519–523 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Hofstra, R. M. W. et al. No mutations found by RET mutation scanning in sporadic and hereditary neuroblastoma. Hum. Genet. 97, 362–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Peterson, S. & Bogenmann, E. The RET and TRKA pathways collaborate to regulate neuroblastoma differentiation. Oncogene 23, 213–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nature Rev. Cancer 3, 203–216 (2003).

    Article  CAS  Google Scholar 

  165. Luo, Y. et al. RET is a potential tumor suppressor gene in colorectal cancer. Oncogene 32, 2037–2047 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  168. Diaz-Rodriguez, E. et al. Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells. Oncogene 31, 2824–2835 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Garcia-Lavandeira, M. et al. Functional role of the RET dependence receptor, GFRa co-receptors and ligands in the pituitary. Front. Horm. Res. 38, 127–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Wells, S. A. Jr. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012). This paper describes the outcomes of an important proof-of-principle clinical trial of vandetanib, the first tyrosine kinase inhibitor approved for treatment of advanced MTC.

    Article  CAS  PubMed  Google Scholar 

  171. Kurzrock, R. et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol. 29, 2660–2666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Borrello, M. G. et al. RET inhibition: implications in cancer therapy. Expert Opin. Ther. Targets 17, 403–419 (2013). This is a comprehensive review of multikinase inhibitors and their potential to target RET.

    Article  CAS  PubMed  Google Scholar 

  174. Sherman, S. I. Lessons learned and questions unanswered from use of multitargeted kinase inhibitors in medullary thyroid cancer. Oral Oncol. 49, 707–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Fox, E. et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin. Cancer Res. 19, 4239–4248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. De Falco, V. et al. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J. Clin. Endocrinol. Metab. 98, E811–E819 (2013).

    Article  PubMed  Google Scholar 

  177. Mologni, L., Redaelli, S., Morandi, A., Plaza-Menacho, I. & Gambacorti-Passerini, C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol. Cell Endocrinol. 377, 1–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Houvras, Y. Completing the Arc: targeted inhibition of RET in medullary thyroid cancer. J. Clin. Oncol. 30, 200–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Carhill, A. A. et al. The noninvestigational use of tyrosine kinase inhibitors in thyroid cancer: establishing a standard for patient safety and monitoring. J. Clin. Endocrinol. Metab. 98, 31–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Barrenschee, M. et al. Site-specific gene expression and localization of growth factor ligand receptors RET, GFRα1 and GFRα2 in human adult colon. Cell Tissue Res. 354, 371–380 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Kramer, E. R. et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 5, e39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Aron, L. et al. Pro-survival role for Parkinson's associated gene DJ-1 revealed in trophically impaired dopaminergic neurons. PLoS Biol. 8, e1000349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jain, S. et al. RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J. Neurosci. 26, 11230–11238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Golden, J. P. et al. RET signaling is required for survival and normal function of nonpeptidergic nociceptors. J. Neurosci. 30, 3983–3994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Gild, M. L. et al. Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr. Relat. Cancer 20, 659–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012). This paper describes novel phenotype-based strategies for identifying potential RET inhibitors as anticancer agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Grieco, M. et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    Article  CAS  PubMed  Google Scholar 

  189. Ossipov, M. H. Growth factors and neuropathic pain. Curr. Pain Headache Rep. 15, 185–192 (2011).

    Article  PubMed  Google Scholar 

  190. Carnicella, S. & Ron, D. GDNF—a potential target to treat addiction. Pharmacol. Ther. 122, 9–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Hoffer, B. J. & Harvey, B. K. Is GDNF beneficial in Parkinson disease? Nat. Rev. Neurol. 7, 600–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Ryu, H., Jeon, G. S., Cashman, N. R., Kowall, N. W. & Lee, J. Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS. Lab Invest. 91, 342–352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Krakora, D. et al. Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol. Ther. 21, 1602–1610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tsui-Pierchala, B. A., Milbrandt, J. & Johnson, E. M. Jr. NGF utilizes c-Ret via a novel GFL-independent, inter-RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. Neuron 33, 261–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Skinner, M. A., Safford, S. D., Reeves, J. G., Jackson, M. E. & Freemerman, A. J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 82, 344–351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Brose, M. S. et al. Sorafenib in locally advanced or metastatic patients with radioactive iodine-refractory differentiated thyroid cancer: The phase III DECISION trial. Journal Clinical Oncology 31, (Suppl.), a4 (2013).

    Article  Google Scholar 

  197. Gild, M. L., Bullock, M., Robinson, B. G. & Clifton-Bligh, R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat. Rev. Endocrinol. 7, 617–624 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks D. Richardson, M. Crupi and E. Lian for assistance in preparation of this manuscript. The author gratefully acknowledges financial support from The Cancer Research Society and the Carcinoid NeuroEndocrine Tumour Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois M. Mulligan.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

A marfanoid habitus

A physical phenotype that is reminiscent of individuals with Marfan syndrome. Features include elongated long bones and fingers, as well as hyperflexible joints.

Pituitary somatotrophs

Secretory cells found in the anterior pituitary gland that produce growth hormone.

Nociceptors

Sensory neurons that respond to noxious stimuli to initiate the sensation of pain.

Amyotrophic lateral sclerosis

A progressive disorder of motor neuron degeneration that leads to muscle weakness and eventual atrophy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulligan, L. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 14, 173–186 (2014). https://doi.org/10.1038/nrc3680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3680

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer