Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets

Abstract

The analysis of human cancer by genome sequencing and various types of arrays has proved that many tumours harbour hundreds of genes that are mutated or substantially altered by copy number changes. But how many of these changes are meaningful? And how can we exploit these massive data sets to yield new targets for cancer treatment? In this Opinion article, we describe emerging approaches that aim to determine which altered genes are actually contributing to cancer, as well as their potential as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational approaches.
Figure 2: Cross-species comparative genomic approaches.
Figure 3: High-throughput insertional mutagenesis screens.
Figure 4: Whole-genome RNA interference screens.
Figure 5: Cancer genome-focused screening.

Similar content being viewed by others

References

  1. Kimura, H. et al. ALK fusion gene positive lung cancer and 3 cases treated with an inhibitor for ALK kinase activity. Lung Cancer 75, 66–72 (2012).

    Article  Google Scholar 

  2. Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol. 26, 3785–3790 (2008).

    Article  CAS  Google Scholar 

  3. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  Google Scholar 

  4. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  5. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  6. Hammerman, P. S. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 1, 78–89 (2011).

    Article  CAS  Google Scholar 

  7. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  Google Scholar 

  8. Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer 10, 102–115 (2010).

    Article  CAS  Google Scholar 

  9. Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20, 810–817 (2011).

    Article  CAS  Google Scholar 

  10. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  Google Scholar 

  11. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    Article  CAS  Google Scholar 

  12. Koudijs, M. J. et al. High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors. Genome Res. 21, 2181–2189 (2011).

    Article  CAS  Google Scholar 

  13. Mattison, J. et al. Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach. Cancer Res. 70, 883–895 (2010).

    Article  CAS  Google Scholar 

  14. Starr, T. K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  Google Scholar 

  15. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372–12377 (2011).

    Article  CAS  Google Scholar 

  16. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    Article  CAS  Google Scholar 

  17. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  Google Scholar 

  18. TCGA. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  19. Cerami, E., Demir, E., Schultz, N., Taylor, B. S. & Sander, C. Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 5, e8918 (2010).

    Article  Google Scholar 

  20. Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

    Article  CAS  Google Scholar 

  21. Vaske, C. J. et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237–i245 (2010).

    Article  CAS  Google Scholar 

  22. Oda, K. et al. PIK3CA cooperates with other phosphatidylinositol 3′-kinase pathway mutations to effect oncogenic transformation. Cancer Res. 68, 8127–8136 (2008).

    Article  CAS  Google Scholar 

  23. Bansal, M. & Califano, A. Genome-wide dissection of posttranscriptional and posttranslational interactions. Methods Mol. Biol. 786, 131–149 (2012).

    Article  CAS  Google Scholar 

  24. Sumazin, P. et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    Article  CAS  Google Scholar 

  25. Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010).

    Article  CAS  Google Scholar 

  26. Akavia, U. D. et al. An integrated approach to uncover drivers of cancer. Cell 143, 1005–1017 (2010).

    Article  CAS  Google Scholar 

  27. Carter, H. et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res. 69, 6660–6667 (2009).

    Article  CAS  Google Scholar 

  28. Rueda, O. M. & Diaz-Uriarte, R. Finding recurrent copy number alteration regions: a review of methods. Curr. Bioinform. 5, 1–17 (2010).

    Article  CAS  Google Scholar 

  29. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  Google Scholar 

  30. Karlsson, E. et al. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosom. Cancer 50, 775–787 (2011).

    Article  CAS  Google Scholar 

  31. Wu, G., Feng, X. & Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 11, R53 (2010).

    Article  Google Scholar 

  32. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genet. 37, 48–55 (2005).

    Article  CAS  Google Scholar 

  33. Lee, J. S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nature Genet. 36, 1306–1311 (2004).

    Article  CAS  Google Scholar 

  34. Tward, A. D. et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc. Natl Acad. Sci. USA 104, 14771–14776 (2007).

    Article  CAS  Google Scholar 

  35. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    Article  CAS  Google Scholar 

  36. Wartman, L. D. et al. Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression. J. Clin. Invest. 121, 1445–1455 (2011).

    Article  Google Scholar 

  37. Ma, O. et al. MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res. 69, 2559–2567 (2009).

    Article  CAS  Google Scholar 

  38. Cheng, L. et al. Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2 and Yap1 in sporadic mammary carcinoma associated with p53 deficiency. Oncogene 29, 5700–5711 (2010).

    Article  CAS  Google Scholar 

  39. Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA 103, 12405–12410 (2006).

    Article  CAS  Google Scholar 

  40. Keng, V. W. et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotech. 27, 264–274 (2009).

    Article  CAS  Google Scholar 

  41. Starr, T. K. et al. A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis. Proc. Natl Acad. Sci. USA 108, 5765–5770 (2011).

    Article  CAS  Google Scholar 

  42. March, H. N. et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nature Genet. 43, 1202–1209 (2011).

    Article  CAS  Google Scholar 

  43. Rangarajan, A. & Weinberg, R. A. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev. Cancer 3, 952–959 (2003).

    Article  CAS  Google Scholar 

  44. Koh, J. L. et al. COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines. Nucleic Acids Res. 40, D957–D963 (2012).

    Article  CAS  Google Scholar 

  45. Brough, R. et al. Functional viability profiles of breast Cancer. Cancer Discov. 1, 260–273 (2011).

    Article  CAS  Google Scholar 

  46. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  Google Scholar 

  47. Scott, K. L. et al. Proinvasion metastasis drivers in early-stage melanoma are oncogenes. Cancer Cell 20, 92–103 (2011).

    Article  CAS  Google Scholar 

  48. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  Google Scholar 

  49. Bric, A. et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16, 324–335 (2009).

    Article  CAS  Google Scholar 

  50. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  Google Scholar 

  51. Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol. Cell 41, 733–746 (2011).

    Article  CAS  Google Scholar 

  52. Schreiber, S. L. et al. Towards patient-based cancer therapeutics. Nature Biotech. 28, 904–906 (2010).

    Article  CAS  Google Scholar 

  53. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  Google Scholar 

  54. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their CTD2 colleagues for their insightful comments, which have helped to focus this Opinion article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scott Powers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Insertional Mutagenesis Database

FURTHER INFORMATION

ARACNE

Broad Integrative Genomics Portal

Cancer Target and Discovery Network

Candidate Gene List

CHASM

CONEXIC

GISTIC

MEMo

MINDy

NetBox

PARADIGM

The Cancer Genome Atlas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eifert, C., Powers, R. From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets. Nat Rev Cancer 12, 572–578 (2012). https://doi.org/10.1038/nrc3299

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3299

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer