Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention

Key Points

  • Peroxisome proliferator-activated receptors (PPARs) have central roles in the regulation of glucose and lipid homeostasis through their functions as molecular sensors that respond to endogenous ligands, leading to the modulation of gene expression. PPARs also regulate cell proliferation, differentiation and inflammation.

  • PPARα mediates hepatocarcinogenesis induced by long-term administration of PPARα agonists in rodent models, an effect that is not found in humans. The mechanism underlying species-specific hepatocarcinogenesis is through mouse PPARα-dependent regulation of the let-7c microRNA, which leads to increased expression of the oncoprotein MYC. The current interest in targeting PPARα for the prevention of certain cancers, including colon and leukaemia, is based on studies showing that PPARα agonists inhibit the proliferation of endothelial cells, increase the synthesis of PPARγ agonists and potentially interfere with the Warburg effect.

  • The role of PPARβ/δ in carcinogenesis is controversial. Several studies have shown that PPARβ/δ is upregulated in cancer cells by the adenomatous polyposis coli (APC)–β-catenin–TCF4 pathway and has a pro-tumorigenic effect in many cancer types. However, other studies have shown that PPARβ/δ agonists can induce terminal differentiation and inhibit innate inflammation, suggesting anticancer effects. In addition, a retrospective study has shown that low expression levels of PPARβ/δ are associated with the decreased survival of patients with colorectal cancer. Therefore, there remains a need to further examine PPARβ/δ protein expression patterns quantitatively in tumour models and the putative mechanisms that are mediated by PPARβ/δ agonists associated with anti-apoptotic or growth stimulatory effects.

  • PPARγ agonists can induce terminal differentiation, inhibit cell proliferation, promote apoptosis and inhibit innate inflammation in many cancer models. This has led to a number of clinical trials with PPARγ agonists, but these have generated mixed results. Moreover, some PPARγ agonists have been associated with pro-tumorigenic effects. Emerging evidence indicates that targeting PPARγ in combination with other chemopreventive or chemotherapeutic agents might increase the efficacy of the effects that are induced by monotherapies.

  • Owing to similarities in the abilities of the three PPARs to improve different metabolic disorders that are known to be associated with increased cancer risk (such as diabetes, obesity, dyslipidemias and chronic inflammation), modulating the activities of the PPARs remains an attractive approach for the treatment and prevention of cancer. The challenge is to advance the discovery of molecular mechanisms of action in order to identify and characterize effective PPAR agonists with acceptable safety profiles.

Abstract

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in regulating glucose and lipid homeostasis, inflammation, proliferation and differentiation. Although all of these functions might contribute to the influence of PPARs in carcinogenesis, there is a distinct need for a review of the literature and additional experimentation to determine the potential for targeting PPARs for cancer therapy and cancer chemoprevention. As PPAR agonists include drugs that are used for the treatment of metabolic diseases, a more complete understanding of the roles of PPARs in cancer will aid in determining any increased cancer risk for patients undergoing therapy with PPAR agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular regulation of transcription by PPARs.
Figure 2: Physiological roles of PPARs.
Figure 3: Contrasting mechanisms of PPARβ/δ in cancer.
Figure 4: Targeting PPARγ for the prevention and treatment of cancer.
Figure 5: Potential targeting of PPARα for prevention and treatment of cancer.

Similar content being viewed by others

References

  1. Schupp, M. & Lazar, M. A. Endogenous ligands for nuclear receptors: digging deeper. J. Biol. Chem. 285, 40409–40415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi, Y., Hon, M. & Evans, R. M. The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling. Proc. Natl Acad. Sci. USA 99, 2613–2618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adhikary, T. et al. Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). PLoS ONE 6, e16344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borland, M. G. et al. Stable over-expression of PPARβ/δ and PPARγ to examine receptor signaling in human HaCaT keratinocytes. Cell. Signal. 23, 2039–2050 (2011). This study critically examined possible mechanisms of PPARβ/δ-dependent regulation, including whether retinoic acid activates PPARβ/δ, whether PPARβ/δ represses PPARγ activity and how PPARβ/δ regulates apoptosis and inflammatory cytokine expression following exposure to ultraviolet light.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marin, H. E. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits colon carcinogenesis. Cancer Res. 66, 4394–4401 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Matsusue, K., Peters, J. M. & Gonzalez, F. J. PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. FASEB J. 18, 1477–1479 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Peters, J. M., Aoyama, T., Burns, A. M. & Gonzalez, F. J. Bezafibrate is a dual ligand for PPARα and PPARβ: studies using null mice. Biochim. Biophys. Acta 1632, 80–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kilgore, K. S. & Billin, A. N. PPARβ/δ ligands as modulators of the inflammatory response. Curr. Opin. Investig. Drugs 9, 463–469 (2008).

    CAS  PubMed  Google Scholar 

  9. Peters, J. M., Foreman, J. E. & Gonzalez, F. J. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast and lung carcinogenesis. Cancer Metastasis Rev. 30, 619–640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peters, J. M. & Gonzalez, F. J. Sorting out the functional role(s) of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cell proliferation and cancer. Biochim. Biophys. Acta 1796, 230–241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Peters, J. M., Hollingshead, H. E. & Gonzalez, F. J. Role of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) in gastrointestinal tract function and disease. Clin. Sci. 115, 107–127 (2008).

    Article  CAS  Google Scholar 

  12. Peters, J. M., Morales, J. L. & Gonzales, F. J. Modulation of gastrointestinal inflammation and colorectal tumorigenesis by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Drug Discov. Today Dis. Mech. 29 Nov 2011 (doi: 10.1016/j.ddmec.2011.11.002).

    Article  CAS  PubMed  Google Scholar 

  13. Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812, 1007–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 437, 759–763 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol. 28, 551–558 (2007). A good review of the literature describing mechanisms of trans-repression by PPARs.

    Article  CAS  PubMed  Google Scholar 

  16. Choi, J. H. et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477, 477–481 (2011). This study demonstrated the feasibility of targeting PPARγ with a non-agonist to elicit anti-diabetic activity without causing the negative side effects that are associated with some PPARγ agonists.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990). This study describes the cloning and characterization of PPARα, the first of the three PPARs to be identified.

    Article  CAS  PubMed  Google Scholar 

  18. Escher, P. et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142, 4195–4202 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Pyper, S. R., Viswakarma, N., Yu, S. & Reddy, J. K. PPARα: energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept Signal. 8, e002 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mandard, S., Muller, M. & Kersten, S. Peroxisome proliferator-activated receptor α target genes. Cell. Mol. Life Sci. 61, 393–416 (2004). A useful resource listing PPARα target genes and corresponding references.

    Article  CAS  PubMed  Google Scholar 

  21. Kersten, S. et al. The peroxisome proliferator-activated receptor α regulates amino acid metabolism. FASEB J. 15, 1971–1978 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Guerre-Millo, M. et al. Peroxisome Proliferator-activated Receptorα activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638–16642 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nature Biotech. 28, 1248–1250 (2010).

    Article  CAS  Google Scholar 

  24. Girroir, E. E. et al. Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice. Biochem. Biophys. Res. Commun. 371, 456–461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leibowitz, M. D. et al. Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Lett. 473, 333–336 (2000). This study was one of the first to demonstrate a functional phenotype resulting from activating PPARβ/δ.

    Article  CAS  PubMed  Google Scholar 

  26. Oliver, W. R. Jr. et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98, 5306–5311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sprecher, D. L. et al. Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor δ agonist. Arterioscler. Thromb. Vasc. Biol. 27, 359–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. X. et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2, e294 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lim, H. J. et al. PPARδ ligand L-165041 ameliorates Western diet-induced hepatic lipid accumulation and inflammation in LDLR−/− mice. Eur. J. Pharmacol. 622, 45–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, S. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation. J. Biol. Chem. 286, 1237–1247 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Nagasawa, T. et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARδ agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 536, 182–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Shan, W. et al. Peroxisome proliferator-activated receptor-β/δ protects against chemically induced liver toxicity in mice. Hepatology 47, 225–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Shan, W. et al. Ligand activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicol. Sci. 105, 418–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burdick, A. D., Kim, D. J., Peraza, M. A., Gonzalez, F. J. & Peters, J. M. The role of peroxisome proliferator-activated receptor-β/δ in epithelial cell growth and differentiation. Cell. Signal. 18, 9–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, Y. et al. Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms. Proc. Natl Acad. Sci. USA 92, 7921–7925 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fajas, L., Fruchart, J. C. & Auwerx, J. PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter. FEBS Lett. 438, 55–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Foreman, J. E. et al. Regulation of peroxisome proliferator-activated receptor-β/δ by the APC/β-CATENIN pathway and nonsteroidal antiinflammatory drugs. Mol. Carcinog. 48, 942–952 (2009); erratum 50, 652–653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abbott, B. D., Wood, C. R., Watkins, A. M., Das, K. P. & Lau, C. S. Peroxisome proliferator-activated receptors α, β, and γ mRNA and protein expression in human fetal tissues. PPAR Res. 2010, 690907 (2010); erratum 2010, 627284 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Barak, Y. et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR γ 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Semple, R. K., Chatterjee, V. K. & O'Rahilly, S. PPAR γ and human metabolic disease. J. Clin. Invest. 116, 581–589 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reddy, J. K., Azarnoff, D. L. & Hignite, C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283, 397–398 (1980). This study was one of the first to demonstrate that long-term administration of PPARα agonists causes liver cancer in rodents.

    Article  CAS  PubMed  Google Scholar 

  46. Peters, J. M., Cattley, R. C. & Gonzalez, F. J. Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 18, 2029–2033 (1997). This study established that PPARα is required to mediate hepatocarcinogenesis caused by long-term administration of PPARα agonists in mice.

    Article  CAS  PubMed  Google Scholar 

  47. Hays, T. et al. Role of peroxisome proliferator-activated receptor-α (PPARα) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis 26, 219–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, J. M., Cheung, C. & Gonzalez, F. J. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J. Mol. Med. 83, 774–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Cheung, C. et al. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor-α. Cancer Res. 64, 3849–3854 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Morimura, K., Cheung, C., Ward, J. M., Reddy, J. K. & Gonzalez, F. J. Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor α to Wy-14,643-induced liver tumorigenesis. Carcinogenesis 27, 1074–1080 (2006). This study demonstrated that PPARα-humanized transgenic models do not develop liver tumours after long-term administration of PPARα agonists, suggesting a species difference in activities between human and rodent PPARα.

    Article  CAS  PubMed  Google Scholar 

  51. Shah, Y. M. et al. Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol. Cell. Biol. 27, 4238–4247 (2007). This study helped to elucidate the mechanism that explains why human PPARα does not mediate hepatocarcinogenesis, but the mouse PPARα does, by showing differential regulation of let-7c miRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He, T. C., Chan, T. A., Vogelstein, B. & Kinzler, K. W. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Modica, S. et al. The intestinal nuclear receptor signature with epithelial localization patterns and expression modulation in tumors. Gastroenterology 138, 636–648 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Foreman, J. E. et al. Functional characterization of peroxisome proliferator-activated receptor-β/δ expression in colon cancer. Mol. Carcinog. 50, 884–900 (2011). This is the most quantitative study to date showing that expression of PPARβ/δ protein is lower in human and rodent colon tumours compared with non-transformed tissue and also includes functional characterization of overexpression of PPARβ/δ in human colon cancer cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Delage, B., Rullier, A., Capdepont, M., Rullier, E. & Cassand, P. The effect of body weight on altered expression of nuclear receptors and cyclooxygenase-2 in human colorectal cancers. Nutr. J. 6, 20 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gupta, R. A. et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor δ in colorectal cancer. Proc. Natl Acad. Sci. USA 97, 13275–13280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roy, H. K., Karolski, W. J. & Ratashak, A. Distal bowel selectivity in the chemoprevention of experimental colon carcinogenesis by the non-steroidal anti-inflammatory drug nabumetone. Int. J. Cancer 92, 609–615 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Takayama, O. et al. Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology. Br. J. Cancer 95, 889–895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, D., Ning, W., Xie, D., Guo, L. & Dubois, R. N. Peroxisome proliferator-activated receptor δ confers resistance to peroxisome proliferator-activated receptor γ-induced apoptosis in colorectal cancer cells. Oncogene 18 July 2011 (doi: 10.1038/onc.2011.299).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, L. et al. Biological function and prognostic significance of peroxisome proliferator-activated receptor δ in rectal cancer. Clin. Cancer Res. 17, 3760–3770 (2011). This study provides the strongest clinical evidence to date showing that PPARβ/δ protects against colorectal cancer in humans.

    Article  CAS  PubMed  Google Scholar 

  61. Yoshinaga, M. et al. The simultaneous expression of peroxisome proliferator-activated receptor delta and cyclooxygenase-2 may enhance angiogenesis and tumor venous invasion in tissues of colorectal cancers. Dig. Dis. Sci. 54, 1108–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Yoshinaga, M. et al. The expression of both peroxisome proliferator-activated receptor δ and cyclooxygenase-2 in tissues is associated with poor prognosis in colorectal cancer patients. Dig. Dis. Sci. 56, 1194–1200 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Davidson, B., Hadar, R., Stavnes, H. T., Trope, C. G. & Reich, R. Expression of the peroxisome proliferator-activated receptors-α, -β, and -γ in ovarian carcinoma effusions is associated with poor chemoresponse and shorter survival. Hum. Pathol. 40, 705–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Glazer, R. I., Yuan, H., Xie, Z. & Yin, Y. PPARγ and PPARδ as modulators of neoplasia and cell fate. PPAR Res. 2008, 247379 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jaeckel, E. C. et al. Correlation of expression of cyclooxygenase-2, vascular endothelial growth factor, and peroxisome proliferator-activated receptor δ with head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 127, 1253–1259 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Nijsten, T., Geluyckens, E., Colpaert, C. & Lambert, J. Peroxisome proliferator-activated receptors in squamous cell carcinoma and its precursors. J. Cutan. Pathol. 32, 340–347 (2005).

    Article  PubMed  Google Scholar 

  67. Tong, B. J. et al. Heightened expression of cyclooxygenase-2 and peroxisome proliferator- activated receptor-δ in human endometrial adenocarcinoma. Neoplasia 2, 483–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, L. C. et al. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Res. 64, 3694–3700 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Hao, C. Y. et al. Alteration of gene expression in macroscopically normal colonic mucosa from individuals with a family history of sporadic colon cancer. Clin. Cancer Res. 11, 1400–1407 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Harman, F. S. et al. Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis. Nature Med. 10, 481–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Knutsen, H. K. et al. Increased levels of PPARβ/δ and cyclin D1 in flat dysplastic ACF and adenomas in ApcMin/+ mice. Anticancer Res. 25, 3781–3789 (2005).

    CAS  PubMed  Google Scholar 

  72. Notterman, D. A., Alon, U., Sierk, A. J. & Levine, A. J. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res. 61, 3124–3130 (2001).

    CAS  PubMed  Google Scholar 

  73. Orner, G. A. et al. Suppression of tumorigenesis in the Apcmin mouse: down-regulation of β-catenin signaling by a combination of tea plus sulindac. Carcinogenesis 24, 263–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Reed, K. R. et al. PPARδ status and Apc-mediated tumourigenesis in the mouse intestine. Oncogene 23, 8992–8996 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Feilchenfeldt, J., Brundler, M. A., Soravia, C., Totsch, M. & Meier, C. A. Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: reduced expression of PPARγ-coactivator 1 (PGC-1). Cancer Lett. 203, 25–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, L. et al. Quantitative analysis of PPARδ mRNA by real-time RT-PCR in 86 rectal cancer tissues. Eur. J. Surg. Oncol. 32, 181–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed, N., Riley, C. & Quinn, M. A. An immunohistochemical perspective of PPARβ and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours. Br. J. Cancer 98, 1415–1424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoshimura, R. et al. Expression of peroxisome proliferator-activated receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int. J. Cancer 104, 597–602 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Foreman, J. E. et al. Regulation of peroxisome proliferator-activated receptor-β/δ by the APC/β-CATENIN pathway and nonsteroidal antiinflammatory drugs. Mol. Carcinog. 48, 942–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ouyang, N., Williams, J. L. & Rigas, B. NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)δ expression in APCmin/+ mice proportionally to their tumor inhibitory effect: implications for the role of PPARδ in carcinogenesis. Carcinogenesis 27, 232–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 27, 7551–7559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sheehan, K. M. et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 282, 1254–1257 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Hollingshead, H. E. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis 29, 169–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nature Med. 10, 245–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, D. et al. Crosstalk between peroxisome proliferator-activated receptor δ and VEGF stimulates cancer progression. Proc. Natl Acad. Sci. USA 103, 19069–19074 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zuo, X. et al. Targeted genetic disruption of peroxisome proliferator-activated receptor-δ and colonic tumorigenesis. J. Natl Cancer Inst. 101, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bility, M. T. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits chemically-induced skin tumorigenesis. Carcinogenesis 29, 2406–2414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bility, M. T., Zhu, B., Kang, B. H., Gonzalez, F. J. & Peters, J. M. Ligand activation of peroxisome proliferator-activated receptor-β/δ and inhibition of cyclooxygenase-2 enhances inhibition of skin tumorigenesis. Toxicol. Sci. 113, 27–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, D. J. et al. Peroxisome proliferator-activated receptor β (δ)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J. Biol. Chem. 279, 23719–23727 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, D. J., Prabhu, K. S., Gonzalez, F. J. & Peters, J. M. Inhibition of chemically-induced skin carcinogenicity by sulindac is independent of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Carcinogenesis 27, 1105–1112 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Zhu, B. et al. Chemoprevention of chemically induced skin tumorigenesis by ligand activation of peroxisome proliferator-activated receptor-β/δ and inhibition of cyclooxygenase 2. Mol. Cancer Ther. 9, 3267–3277 (2011).

    Article  CAS  Google Scholar 

  93. Di-Poi, N., Tan, N. S., Michalik, L., Wahli, W. & Desvergne, B. Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol. Cell 10, 721–733 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Tan, N. S. et al. Critical roles of PPARβ/δ in keratinocyte response to inflammation. Genes Dev. 15, 3263–3277 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Borland, M. G. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell proliferation in human HaCaT keratinocytes. Mol. Pharmacol. 74, 1429–1442 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Burdick, A. D. et al. Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits cell growth of human N/TERT-1 keratinocytes. Cell. Signal. 19, 1163–1171 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, D. J. et al. PPARβ/δ selectively induces differentiation and inhibits cell proliferation. Cell Death Differ. 13, 53–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pollock, C. B. et al. PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis. PLoS ONE 6, e16215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tachibana, K. et al. Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nucl. Recept. 3, 3 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Szeles, L. et al. Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol. Endocrinol. 24, 2218–2231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hollingshead, H. E. et al. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 28, 2641–2649 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N. & Noy, N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129, 723–733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rohrl, C. et al. Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells. J. Cancer Res. Clin. Oncol. 137, 29–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Stephen, R. L. et al. Activation of peroxisome proliferator-activated receptor δ stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Res. 64, 3162–3170 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Grommes, C., Landreth, G. E. & Heneka, M. T. Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists. Lancet Oncol. 5, 419–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Koeffler, H. P. Peroxisome proliferator-activated receptor γ and cancers. Clin. Cancer Res. 9, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  109. Ogino, S. et al. Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARγ) is associated with good prognosis. Gastroenterology 136, 1242–1250 (2009). This study provided clinical evidence showing that PPARγ protects against colorectal cancer in humans.

    Article  CAS  PubMed  Google Scholar 

  110. McAlpine, C. A., Barak, Y., Matise, I. & Cormier, R. T. Intestinal-specific PPARγ deficiency enhances tumorigenesis in ApcMin/+ mice. Int. J. Cancer 119, 2339–2346 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Elnemr, A. et al. PPARγ ligand (thiazolidinedione) induces growth arrest and differentiation markers of human pancreatic cancer cells. Int. J. Oncol. 17, 1157–1164 (2000).

    CAS  PubMed  Google Scholar 

  112. Gupta, R. A., Brockman, J. A., Sarraf, P., Willson, T. M. & DuBois, R. N. Target genes of peroxisome proliferator-activated receptor γ in colorectal cancer cells. J. Biol. Chem. 276, 29681–29687 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Med. 4, 1046–1052 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Tontonoz, P. et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor. Proc. Natl Acad. Sci. USA 94, 237–241 (1997). This study was one of the first to establish that PPARγ ligands can induce differentiation in human cancer cells providing support for the hypothesis that targeting PPARγ may be suitable for human cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yoshizumi, T. et al. Thiazolidinedione, a peroxisome proliferator-activated receptor-γ ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int. J. Oncol. 25, 631–639 (2004).

    CAS  PubMed  Google Scholar 

  116. Drori, S. et al. Hic-5 regulates an epithelial program mediated by PPARγ. Genes Dev. 19, 362–375 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, J. W. et al. Peroxisome proliferator-activated receptor γ-independent ablation of cyclin D1 by thiazolidinediones and their derivatives in breast cancer cells. Mol. Pharmacol. 67, 1342–1348 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Lapillonne, H. et al. Activation of peroxisome proliferator-activated receptor γ by a novel synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Cancer Res. 63, 5926–5939 (2003).

    CAS  PubMed  Google Scholar 

  119. Qin, C. et al. Peroxisome proliferator-activated receptor γ agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor α in MCF-7 breast cancer cells. Cancer Res. 63, 958–964 (2003).

    CAS  PubMed  Google Scholar 

  120. Wang, C. et al. Inhibition of cellular proliferation through IκB kinase-independent and peroxisome proliferator-activated receptor γ-dependent repression of cyclin D1. Mol. Cell. Biol. 21, 3057–3070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yin, F. et al. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem. Biophys. Res. Commun. 286, 916–922 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Koga, H. et al. Involvement of p21WAF1/Cip1, p27Kip1, and p18INK4c in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology 33, 1087–1097 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, F. & Harrison, L. E. Ciglitazone-induced cellular anti-proliferation increases p27kip1 protein levels through both increased transcriptional activity and inhibition of proteasome degradation. Cell. Signal. 17, 809–816 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, F., Kim, E., Wang, C. C. & Harrison, L. E. Ciglitazone-induced p27 gene transcriptional activity is mediated through Sp1 and is negatively regulated by the MAPK signaling pathway. Cell. Signal. 17, 1572–1577 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Itami, A. et al. Ligands for peroxisome proliferator-activated receptor γ inhibit growth of pancreatic cancers both in vitro and in vivo. Int. J. Cancer 94, 370–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Koga, H. et al. Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology 37, 1086–1096 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Motomura, W., Okumura, T., Takahashi, N., Obara, T. & Kohgo, Y. Activation of peroxisome proliferator-activated receptor γ by troglitazone inhibits cell growth through the increase of p27KiP1 in human. Pancreatic carcinoma cells. Cancer Res. 60, 5558–5564 (2000).

    CAS  PubMed  Google Scholar 

  128. Sharma, C., Pradeep, A., Wong, L., Rana, A. & Rana, B. Peroxisome proliferator-activated receptor γ activation can regulate β-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J. Biol. Chem. 279, 35583–35594 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Wei, S. et al. Thiazolidinediones modulate the expression of β-catenin and other cell-cycle regulatory proteins by targeting the F-box proteins of Skp1-Cul1-F-box protein E3 ubiquitin ligase independently of peroxisome proliferator-activated receptor γ. Mol. Pharmacol. 72, 725–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Palakurthi, S. S., Aktas, H., Grubissich, L. M., Mortensen, R. M. & Halperin, J. A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor γ and mediated by inhibition of translation initiation. Cancer Res. 61, 6213–6218 (2001).

    CAS  PubMed  Google Scholar 

  131. Bae, M. A. & Song, B. J. Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells. Mol. Pharmacol. 63, 401–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Zander, T. et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARγ. J. Neurochem. 81, 1052–1060 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Shiau, C. W. et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ. Cancer Res. 65, 1561–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Farrow, B. & Evers, B. M. Activation of PPARγ increases PTEN expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 301, 50–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, S. Y. et al. PPAR-γ agonist increase gefitinib's antitumor activity through PTEN expression. Lung Cancer 51, 297–301 (2006).

    Article  PubMed  Google Scholar 

  136. Patel, L. et al. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol. 11, 764–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Teresi, R. E. et al. Increased PTEN expression due to transcriptional activation of PPARγ by Lovastatin and Rosiglitazone. Int. J. Cancer 118, 2390–2398 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, W. et al. PPARγ activator rosiglitazone inhibits cell migration via upregulation of PTEN in human hepatocarcinoma cell line BEL-7404. Cancer Biol. Ther. 5, 1008–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, K. Y., Kim, S. S. & Cheon, H. G. Differential anti-proliferative actions of peroxisome proliferator-activated receptor-γ agonists in MCF-7 breast cancer cells. Biochem. Pharmacol. 72, 530–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Yan, K. H. et al. The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol. Carcinog. 49, 235–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Kim, Y., Suh, N., Sporn, M. & Reed, J. C. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J. Biol. Chem. 277, 22320–22329 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Schultze, K. et al. Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin. Apoptosis 11, 1503–1512 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Wei, S., Yang, J., Lee, S. L., Kulp, S. K. & Chen, C. S. PPARγ-independent antitumor effects of thiazolidinediones. Cancer Lett. 276, 119–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nature Rev. Immunol. 10, 365–376 (2010).

    Article  CAS  Google Scholar 

  145. Adachi, M. et al. Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55, 1104–1113 (2006). This study demonstrated that PPARγ inhibits inflammation in the gut and protects against inflammatory bowel, which may explain in part the protective nature of PPARγ in colorectal cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shah, Y. M., Morimura, K. & Gonzalez, F. J. Expression of peroxisome proliferator-activated receptor-γ in macrophage suppresses experimentally induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G657–G666 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Lefebvre, A. M. et al. Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nature Med. 4, 1053–1057 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nature Med. 4, 1058–1061 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Pino, M. V., Kelley, M. F. & Jayyosi, Z. Promotion of colon tumors in C57BL/6J-APCmin/+ mice by thiazolidinedione PPARγ agonists and a structurally unrelated PPARγ agonist. Toxicol. Pathol. 32, 58–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Yang, K. et al. Peroxisome proliferator-activated receptor γ agonist troglitazone induces colon tumors in normal C57BL/6J mice and enhances colonic carcinogenesis in Apc1638 N/+Mlh1+/− double mutant mice. Int. J. Cancer 116, 495–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Lubet, R. A. et al. Rosiglitazone, a PPARγ agonist: potent promoter of hydroxybutyl(butyl)nitrosamine-induced urinary bladder cancers. Int. J. Cancer 123, 2254–2259 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Piccinni, C., Motola, D., Marchesini, G. & Poluzzi, E. Assessing the association of pioglitazone use and bladder cancer through drug adverse event reporting. Diabetes Care 34, 1369–1371 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fenner, M. H. & Elstner, E. Peroxisome proliferator-activated receptor-γ ligands for the treatment of breast cancer. Expert Opin. Investig. Drugs 14, 557–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Saez, E. et al. PPARγ signaling exacerbates mammary gland tumor development. Genes Dev. 18, 528–540 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, Y. & Lazar, M. A. Differential gene regulation by PPARγ agonist and constitutively active PPARγ2. Mol. Endocrinol. 16, 1040–1048 (2002).

    CAS  PubMed  Google Scholar 

  157. Panigrahy, D. et al. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl Acad. Sci. USA 105, 985–990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pozzi, A. et al. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. J. Biol. Chem. 282, 17685–17695 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 25, 409–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Aoyama, A. et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J. Biol. Chem. 273, 5678–5684 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg's contributions to current concepts of cancer metabolism. Nature Rev. Cancer 11, 325–337 (2011).

    Article  CAS  Google Scholar 

  162. Tsugane, S. & Inoue, M. Insulin resistance and cancer: epidemiological evidence. Cancer Sci. 101, 1073–1079 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Wolin, K. Y., Carson, K. & Colditz, G. A. Obesity and cancer. Oncologist 15, 556–565 (2011).

    Article  Google Scholar 

  164. Kasuga, J. et al. Novel biphenylcarboxylic acid peroxisome proliferator-activated receptor (PPAR) δ selective antagonists. Bioorg. Med. Chem. Lett. 19, 6595–6599 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Naruhn, S. et al. High affinity peroxisome proliferator-activated receptor β/δ-specific ligands with pure antagonistic or inverse agonistic properties. Mol. Pharmacol. 80, 828–838 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Shearer, B. G. et al. Identification and characterization of a selective peroxisome proliferator-activated receptor β/δ (NR1C2) antagonist. Mol. Endocrinol. 22, 523–529 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shearer, B. G. et al. Identification and characterization of 4-chloro-N-(2-{[5-trifluoromethyl)-2-pyridyl]sulfonyl}ethyl)benzamide (GSK3787), a selective and irreversible peroxisome proliferator-activated receptor δ (PPARδ) antagonist. J. Med. Chem. 53, 1857–1861 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Zaveri, N. T. et al. A novel peroxisome proliferator-activated receptor δ antagonist, SR13904, has anti-proliferative activity in human cancer cells. Cancer Biol. Ther. 8, 1252–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Palkar, P. S. et al. Cellular and pharmacological selectivity of the PPARβ/δ antagonist GSK3787. Mol. Pharmacol. 78, 419–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Demetri, G. D. & et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA 96, 3951–3956 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Debrock, G. et al. A phase II trial with rosiglitazone in liposarcoma patients. Br. J. Cancer 89, 1409–1412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Smith, M. R. et al. Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy. Cancer 101, 1569–1574 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Hisatake, J. I. et al. Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor γ in human prostate cancer. Cancer Res. 60, 5494–5498 (2000).

    CAS  PubMed  Google Scholar 

  174. Mueller, E. et al. Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer. Proc. Natl Acad. Sci. USA 97, 10990–10995 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schwartz, G. K. et al. Phase I and pharmacokinetic study of LY293111, an orally bioavailable LTB4 receptor antagonist, in patients with advanced solid tumors. J. Clin. Oncol. 23, 5365–5373 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Burstein, H. J. et al. Use of the peroxisome proliferator-activated receptor (PPAR) γ ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res. Treat. 79, 391–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Kulke, M. H. et al. A phase II study of troglitazone, an activator of the PPARγ receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J. 8, 395–399 (2002).

    Article  PubMed  Google Scholar 

  178. Baetz, T. et al. A phase I study of oral LY293111 given daily in combination with irinotecan in patients with solid tumours. Invest. New Drugs 25, 217–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Read, W. L., Baggstrom, M. Q., Fracasso, P. M. & Govindan, R. A phase I study of bexarotene and rosiglitazone in patients with refractory cancers. Chemotherapy 54, 236–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Hau, P. et al. Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-γ agonists in recurrent high-grade gliomas - a phase II study. Oncology 73, 21–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Kebebew, E. et al. A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery 140, 960–966; discussion 966–967 (2006).

    Article  PubMed  Google Scholar 

  182. Tepmongkol, S., Keelawat, S., Honsawek, S. & Ruangvejvorachai, P. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-γ. Thyroid 18, 697–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Kroll, T. G. et al. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Giordano, T. J. et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin. Cancer Res. 12, 1983–1993 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Lacroix, L. et al. Follicular thyroid tumors with the PAX8-PPARγ1 rearrangement display characteristic genetic alterations. Am. J. Pathol. 167, 223–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Erdmann, E., Charbonnel, B. & Wilcox, R. Thiazolidinediones and cardiovascular risk - a question of balance. Curr. Cardiol. Rev. 5, 155–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Grey, A. et al. The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 92, 1305–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Schwartz, A. V. & Sellmeyer, D. E. Thiazolidinedione therapy gets complicated: is bone loss the price of improved insulin resistance? Diabetes Care 30, 1670–1671 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Schwartz, A. V. et al. Thiazolidinedione use and bone loss in older diabetic adults. J. Clin. Endocrinol. Metab. 91, 3349–3354 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Kodera, Y. et al. Ligand type-specific interactions of peroxisome proliferator-activated receptor γ with transcriptional coactivators. J. Biol. Chem. 275, 33201–33204 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Zhang, Q., Zhou, H., Zhai, S. & Yan, B. Natural product-inspired synthesis of thiazolidine and thiazolidinone compounds and their anticancer activities. Curr. Pharm. Des. 16, 1826–1842 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Burton, J. D., Castillo, M. E., Goldenberg, D. M. & Blumenthal, R. D. Peroxisome proliferator-activated receptor-γ antagonists exhibit potent antiproliferative effects versus many hematopoietic and epithelial cancer cell lines. Anticancer Drugs 18, 525–534 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Lea, M. A., Sura, M. & Desbordes, C. Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) γ agonists and antagonists. Anticancer Res. 24, 2765–2771 (2004).

    CAS  PubMed  Google Scholar 

  195. Schaefer, K. L. et al. Peroxisome proliferator-activated receptor γ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res. 65, 2251–2259 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Takahashi, H. et al. Inhibition of peroxisome proliferator-activated receptor γ activity in esophageal carcinoma cells results in a drastic decrease of invasive properties. Cancer Sci. 97, 854–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Burton, J. D., Goldenberg, D. M. & Blumenthal, R. D. Potential of peroxisome proliferator-activated receptor γ antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res. 2008, 494161 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Osborne, C. K. et al. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J. Natl Cancer Inst. 87, 746–750 (1995).

    Article  CAS  PubMed  Google Scholar 

  199. Kohno, H., Suzuki, R., Sugie, S. & Tanaka, T. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer 5, 46 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Niho, N. et al. Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands. Cancer Res. 63, 6090–6095 (2003).

    CAS  PubMed  Google Scholar 

  201. Tanaka, T. et al. Ligands for peroxisome proliferator-activated receptors α and γ inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res. 61, 2424–2428 (2001).

    CAS  PubMed  Google Scholar 

  202. Tenenbaum, A. et al. Does the lipid-lowering peroxisome proliferator-activated receptors ligand bezafibrate prevent colon cancer in patients with coronary artery disease? Cardiovasc. Diabetol. 7, 18 (2008). This study suggests that the pan-PPAR agonist bezafibrate may prevent colon cancer in humans, supporting the hypothesis that targeting all three PPARs may be suitable for chemoprevention.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Jackson, L. et al. Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer. Gut 52, 1317–1322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Khanim, F. L. et al. Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia. PLoS ONE 4, e8147 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Hayden, R. E. et al. Treatment of primary CLL cells with bezafibrate and medroxyprogesterone acetate induces apoptosis and represses the pro-proliferative signal of CD40-ligand, in part through increased 15dΔ12,14, PGJ2 . Leukemia 23, 292–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Rubenstrunk, A., Hanf, R., Hum., D. W., Fruchart, J. C. & Staels, B. Safety issues and prospects for future generations of PPAR modulators. Biochim. Biophys. Acta 1771, 1065–1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Peraza, M. A., Burdick, A. D., Marin, H. E., Gonzalez, F. J. & Peters, J. M. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol. Sci. 90, 269–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Still, K., Grabowski, P., Mackie, I., Perry, M. & Bishop, N. The peroxisome proliferator activator receptor α/δ agonists linoleic acid and bezafibrate upregulate osteoblast differentiation and induce periosteal bone formation in vivo. Calcif. Tissue Int. 83, 285–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Brautigam, K. et al. Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines. J. Cancer Res. Clin. Oncol. 137, 875–886 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Cesario, R. M., Stone, J., Yen, W. C., Bissonnette, R. P. & Lamph, W. W. Differentiation and growth inhibition mediated via the RXR:PPARγ heterodimer in colon cancer. Cancer Lett. 240, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Crowe, D. L. & Chandraratna, R. A. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res. 6, R546–R555 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Desreumaux, P. et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor γ (PPARγ) heterodimer. A basis for new therapeutic strategies. J. Exp. Med. 193, 827–838 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Fu, H. et al. Chemoprevention of lung carcinogenesis by the combination of aerosolized budesonide and oral pioglitazone in A/J. mice. Mol. Carcinog. 50, 913–921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Girnun, G. D. et al. Synergy between PPARγ ligands and platinum-based drugs in cancer. Cancer Cell 11, 395–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hamaguchi, N. et al. In vitro and in vivo therapeutic efficacy of the PPAR-γ agonist troglitazone in combination with cisplatin against malignant pleural mesothelioma cell growth. Cancer Sci. 101, 1955–1964 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Park, B. H., Lee, S. B., Stolz, D. B., Lee, Y. J. & Lee, B. C. Synergistic interactions between heregulin and peroxisome proliferator-activated receptor-γ (PPARγ) agonist in breast cancer cells. J. Biol. Chem. 286, 20087–20099 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Reddy, R. C. et al. Chemotherapeutic drugs induce PPARγ expression and show sequence-specific synergy with PPARγ ligands in inhibition of non-small cell lung cancer. Neoplasia 10, 597–603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tikoo, K., Kumar, P. & Gupta, J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats. BMC Cancer 9, 107 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Yamazaki, K. et al. Synergistic effects of RXR α and PPAR γ ligands to inhibit growth in human colon cancer cells--phosphorylated RXR α is a critical target for colon cancer management. Gut 56, 1557–1563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yokoyama, Y., Xin, B., Shigeto, T. & Mizunuma, H. Combination of ciglitazone, a peroxisome proliferator-activated receptor γ ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. J. Cancer Res. Clin. Oncol. 137, 1219–1228 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Fauconnet, S. et al. Differential regulation of vascular endothelial growth factor expression by peroxisome proliferator-activated receptors in bladder cancer cells. J. Biol. Chem. 277, 23534–23543 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Meissner, M., Hrgovic, I., Doll, M. & Kaufmann, R. PPARδ agonists suppress angiogenesis in a VEGFR2-dependent manner. Arch. Dermatol. Res. 303, 41–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  223. Abdollahi, A. et al. Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc. Natl Acad. Sci. USA 104, 12890–12895 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Müller-Brüsselbach, S. et al. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice. EMBO J. 26, 3686–3698 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Piqueras, L. et al. Activation of PPARβ/δ induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 63–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  226. Biscetti, F. et al. Selective activation of peroxisome proliferator-activated receptor (PPAR)α and PPARγ induces neoangiogenesis through a vascular endothelial growth factor-dependent mechanism. Diabetes 57, 1394–1404 (2008).

    Article  CAS  PubMed  Google Scholar 

  227. Bishop-Bailey, D. & Hla, T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Δ12,14-prostaglandin J2 . J. Biol. Chem. 274, 17042–17048 (1999).

    Article  CAS  PubMed  Google Scholar 

  228. Chu, K. et al. Peroxisome proliferator-activated receptor-γ-agonist, rosiglitazone, promotes angiogenesis after focal cerebral ischemia. Brain Res. 1093, 208–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  229. Huang, P. H. et al. Pioglitazone ameliorates endothelial dysfunction and restores ischemia-induced angiogenesis in diabetic mice. Biomed. Pharmacother. 62, 46–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  230. Xin, X., Yang, S., Kowalski, J. & Gerritsen, M. E. Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem. 274, 9116–9121 (1999).

    Article  CAS  PubMed  Google Scholar 

  231. Chintalgattu, V., Harris, G. S., Akula, S. M. & Katwa, L. C. PPAR-γ agonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovasc. Res. 74, 140–150 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge J. Corell for technical assistance with the figures and P. Devchand for critical review and suggestions for the manuscript. The authors' research is supported by the US National Institutes of Health (CA124533, CA126826, CA141029, CA140369 and AA018863) to J.M.P., (R01CA148828) to Y.M.S. and the National Cancer Institute Intramural Research Program (ZIABC005561, ZIABC005562 and ZIABC005708) to F.J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Jeffrey M. Peters' homepage

Glossary

Peroxisome proliferator-activated receptors

(PPARs). This class of nuclear receptor acquired their name because the first receptor of this class identified (PPARα) mediates the phenomenon of the proliferation of peroxisomes observed in rodents given fibrates and other chemicals.

Agonists

Compounds that bind to a receptor that invokes a biological response that is most often transcriptionally mediated. The specificity of an agonist is often defined by its ability to bind to the receptor at a given concentration and whether it is able to interact with a single receptor.

Chemoprevention

The inhibition or prevention of disease by use of a drug or natural compound. Many chemopreventive agents show anti-inflammatory activities.

Antagonists

Compounds that bind to a receptor and that block all known receptor activities induced by activation by an agonist. The potency of an antagonist is often defined by the concentration required to inhibit activation by an agonist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, J., Shah, Y. & Gonzalez, F. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12, 181–195 (2012). https://doi.org/10.1038/nrc3214

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3214

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer