Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The different roles of ER subtypes in cancer biology and therapy

Key Points

  • Oestrogen receptor (ER) subtypes (ERα and ERβ) influence the development and progression of hormone-related cancers by exerting distinct biological functions. ERα is associated with aberrant proliferation, inflammation and the development of malignancy. ERβ seems to oppose ERα actions on cell proliferation by modulating the expression of many ERα-regulated genes and exhibits antimigratory and anti-invasive properties in cancer cells.

  • Multiple factors affect the ER-mediated regulation of gene expression and may account for the adverse and beneficial effects of oestrogens and anti-oestrogens. Both ER genomic and non-genomic actions often converge at certain regulatory sites of the adjacent ER-responsive genes. The final gene and the subsequent cancer biological responses may vary depending on the combination of transcription factors; the ratio and the cellular localization of ERα and ERβ; the expression levels of various co-regulators and signal transduction components; and the nature of extracellular stimuli. These variables are altered during cancer transformation and are divergent in different cancer cells.

  • Owing to the practical limitations in detection, only a few truncated ERα and ERβ variant isoforms have been examined in tumour samples and correlated with clinical outcome. Some of these variants are localized in the cytoplasm and plasma membrane, show variable expression in cancer tissues and influence cancer progression and response to therapy either through genomic pathways by modulating the activity of wild-type ERs or by interacting with the membrane and cytoplasmic signalling cascade.

  • Perturbation of ER subtype-specific expression has been detected in different stages of various types of cancer, with the levels of ERα and ERβ declining in most cancers as the disease develops. The hypermethylation of the ER promoters, microRNAs that target the ER mRNAs and increased proteasomal degradation are among the factors that are responsible for the reduced levels of ERs in cancer tissues.

  • ERα is the principal biomarker for the response of breast cancers to endocrine therapy, and its truncated isoform ERα-36 seems to confer resistance to tamoxifen. On-going research is trying to fully clarify the prognostic and predictive role of ERβ. So far, it seems that the nuclear wild-type ERβ complements ERα in predicting response to endocrine therapy and is associated with better overall outcome and the metastatic potential of breast and prostate cancer. The cytoplasmic ERβ2 (also known as ERβcx) isoform correlates with worse survival and metastatic phenotype.

  • Insights into the mechanisms of ER action and regulation have suggested possible therapeutic approaches for hormone-related cancers. The development of selective ERα and ERβ agonists and antagonists, and alternative strategies that target the ER signalling beyond the ligand-binding activity, including as targets components of growth factor signalling, methylases, ubiquitin ligases, and chaperones are under investigation.

Abstract

By eliciting distinct transcriptional responses, the oestrogen receptors (ERs) ERα and ERβ exert opposite effects on cellular processes that include proliferation, apoptosis and migration and that differentially influence the development and the progression of cancer. Perturbation of ER subtype-specific expression has been detected in various types of cancer, and the differences in the expression of ERs are correlated with the clinical outcome. The changes in the bioavailability of ERs in tumours, together with their specific biological functions, promote the selective restoration of their activity as one of the major therapeutic approaches for hormone-dependent cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of structural and functional domains of the ERs.
Figure 2: Molecular mechanism of ER action.
Figure 3: Regulation of the cellular levels of ERs.

Similar content being viewed by others

References

  1. Heldring, N. et al. Estrogen receptors: how do they signal and what are their targets. Physiol. Rev. 87, 905–931 (2007). This review discusses new insights into the mechanism of ER action and the molecular mechanism of anti-oestrogen signalling.

    CAS  PubMed  Google Scholar 

  2. Toft, D. & Gorski, J. A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc. Natl Acad. Sci. USA 55, 1574–1581 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Walter, P. et al. Cloning of the human estrogen receptor cDNA. Proc. Natl Acad. Sci. USA 82, 7889–7893 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93, 5925–5930 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Herynk, M. H. & Fuqua, S. A. Estrogen receptor mutations in human disease. Endocr. Rev. 25, 869–898 (2004). This reference extensively describes the splice variants and mutations of the human ER subtypes and illustrates their role in disease.

    CAS  PubMed  Google Scholar 

  6. Bjornstrom, L. & Sjoberg, M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 19, 833–842 (2005).

    PubMed  Google Scholar 

  7. Colditz, G. A. Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer. J. Natl Cancer Inst. 90, 814–823 (1998).

    CAS  PubMed  Google Scholar 

  8. Hankinson, S. E., Colditz, G. A. & Willett, W. C. Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res. 6, 213–218 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shang, Y. Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nature Rev. Cancer 6, 360–368 (2006).

    CAS  Google Scholar 

  10. Ellem, S. J. & Risbridger, G. P. Treating prostate cancer: a rationale for targeting local oestrogens. Nature Rev. Cancer 7, 621–627 (2007). This article discusses the complexity of oestrogen action in the prostate and suggests the selective targeting of ER subtypes as a potential new and more effective therapeutic approach.

    CAS  Google Scholar 

  11. Fox, E. M., Davis, R. J. & Shupnik, M. A. ERβ in breast cancer—onlooker, passive player, or active protector? Steroids 73, 1039–1051 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong, N. A. et al. ERβ isoform expression in colorectal carcinoma: an in vivo and in vitro study of clinicopathological and molecular correlates. J. Pathol. 207, 53–60 (2005).

    CAS  PubMed  Google Scholar 

  13. Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nature Rev. Cancer 9, 631–643 (2009).

    CAS  Google Scholar 

  14. Speirs, V. et al. Clinical importance of estrogen receptor β isoforms in breast cancer. J. Clin. Oncol. 26, 5825–5826 (2008).

    PubMed  Google Scholar 

  15. Stabile, L. P. et al. Combined analysis of estrogen receptor β-1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin. Cancer Res. 17, 154–164 (2011). This article summarizes new clinical findings regarding the prognostic role of ERβ in lung cancer.

    CAS  PubMed  Google Scholar 

  16. Leung, Y. K. et al. Estrogen receptor β2 and β5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocr. Relat. Cancer 17, 675–689 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Britton, D. J. et al. Bidirectional cross talk between ERα and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res. Treat 96, 131–146 (2006).

    CAS  PubMed  Google Scholar 

  18. Nonclercq, D., Journe, F., Body, J. J., Leclercq, G. & Laurent, G. Ligand-independent and agonist-mediated degradation of estrogen receptor-α in breast carcinoma cells: evidence for distinct degradative pathways. Mol. Cell Endocrinol. 227, 53–65 (2004).

    CAS  PubMed  Google Scholar 

  19. Swedenborg, E., Power, K. A., Cai, W., Pongratz, I. & Ruegg, J. Regulation of estrogen receptor β activity and implications in health and disease. Cell. Mol. Life Sci. 66, 3873–3894 (2009).

    CAS  PubMed  Google Scholar 

  20. Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nature Rev. Cancer 9, 615–630 (2009).

    CAS  Google Scholar 

  21. Enmark, E. et al. Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab. 82, 4258–4265 (1997).

    CAS  PubMed  Google Scholar 

  22. Gosden, J. R., Middleton, P. G. & Rout, D. Localization of the human oestrogen receptor gene to chromosome 6q24----q27 by in situ hybridization. Cytogenet. Cell Genet. 43, 218–220 (1986).

    CAS  PubMed  Google Scholar 

  23. Biswas, D. K., Singh, S., Shi, Q., Pardee, A. B. & Iglehart, J. D. Crossroads of estrogen receptor and NF-κB signaling. Sci. STKE 2005, pe27 (2005).

    PubMed  Google Scholar 

  24. Fox, E. M., Andrade, J. & Shupnik, M. A. Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways. Steroids 74, 622–627 (2009).

    CAS  PubMed  Google Scholar 

  25. Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nature Genet. 38, 1289–1297 (2006). This reference describes distinct mechanisms of ER-mediated gene regulation.

    CAS  PubMed  Google Scholar 

  26. Menendez, D., Inga, A. & Resnick, M. A. Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences. Proc. Natl Acad. Sci. USA 107, 1500–1505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sotgia, F. et al. Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res. 66, 10647–10651 (2006).

    CAS  PubMed  Google Scholar 

  28. Chambliss, K. L. et al. Estrogen receptor α and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 87, e44–e52 (2000).

    CAS  PubMed  Google Scholar 

  29. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  30. Massarweh, S. & Schiff, R. Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin. Cancer Res. 13, 1950–1954 (2007). References 13 and 30 summarize and evaluate new insights into the mechanism of endocrine resistance based on global gene expression profiling approaches and functional genetic screens and suggest new therapeutic opportunities to target resistance and improve breast cancer disease outcomes.

    CAS  PubMed  Google Scholar 

  31. Razandi, M., Pedram, A., Merchenthaler, I., Greene, G. L. & Levin, E. R. Plasma membrane estrogen receptors exist and functions as dimers. Mol. Endocrinol. 18, 2854–2865 (2004).

    CAS  PubMed  Google Scholar 

  32. Kahlert, S. et al. Estrogen receptor α rapidly activates the IGF-1 receptor pathway. J. Biol. Chem. 275, 18447–18453 (2000).

    CAS  PubMed  Google Scholar 

  33. Shupnik, M. A. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 23, 7979–7989 (2004).

    CAS  PubMed  Google Scholar 

  34. Song, R. X. et al. Linkage of rapid estrogen action to MAPK activation by ERα-Shc association and Shc pathway activation. Mol. Endocrinol. 16, 116–127 (2002).

    CAS  PubMed  Google Scholar 

  35. Smith, C. L., Nawaz, Z. & O'Malley, B. W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11, 657–666 (1997).

    CAS  PubMed  Google Scholar 

  36. Webb, P. et al. ERβ binds N-CoR in the presence of estrogens via an LXXLL-like motif in the N-CoR C-terminus. Nucl. Recept. 1, 4 (2003).

    PubMed  PubMed Central  Google Scholar 

  37. Bouras, T., Southey, M. C. & Venter, D. J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 61, 903–907 (2001).

    CAS  PubMed  Google Scholar 

  38. Klinge, C. M., Jernigan, S. C., Mattingly, K. A., Risinger, K. E. & Zhang, J. Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors α and β by coactivators and corepressors. J. Mol. Endocrinol. 33, 387–410 (2004).

    CAS  PubMed  Google Scholar 

  39. Dubik, D. & Shiu, R. P. Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7, 1587–1594 (1992).

    CAS  PubMed  Google Scholar 

  40. Hartman, J. et al. Tumor repressive functions of estrogen receptor β in SW480 colon cancer cells. Cancer Res. 69, 6100–6106 (2009).

    CAS  PubMed  Google Scholar 

  41. Liu, M. M. et al. Opposing action of estrogen receptors α and β on cyclin D1 gene expression. J. Biol. Chem. 277, 24353–24360 (2002).

    CAS  PubMed  Google Scholar 

  42. Foley, E. F., Jazaeri, A. A., Shupnik, M. A., Jazaeri, O. & Rice, L. W. Selective loss of estrogen receptor β in malignant human colon. Cancer Res. 60, 245–248 (2000).

    CAS  PubMed  Google Scholar 

  43. Zhu, X. et al. Dynamic regulation of estrogen receptor-β expression by DNA methylation during prostate cancer development and metastasis. Am. J. Pathol. 164, 2003–2012 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rutherford, T. et al. Absence of estrogen receptor-β expression in metastatic ovarian cancer. Obstet. Gynecol. 96, 417–421 (2000).

    CAS  PubMed  Google Scholar 

  45. Leav, I. et al. Comparative studies of the estrogen receptors β and α and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am. J. Pathol. 159, 79–92 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Eeckhoute, J. et al. Positive cross-regulatory loop ties GATA-3 to estrogen receptor α expression in breast cancer. Cancer Res. 67, 6477–6483 (2007).

    CAS  PubMed  Google Scholar 

  47. Guo, S. & Sonenshein, G. E. Forkhead box transcription factor FOXO3a regulates estrogen receptor α expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol. Cell Biol. 24, 8681–8690 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Madureira, P. A. et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor α in breast cancer cells. J. Biol. Chem. 281, 25167–25176 (2006).

    CAS  PubMed  Google Scholar 

  49. Adams, B. D., Furneaux, H. & White, B. A. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol. 21, 1132–1147 (2007).

    CAS  PubMed  Google Scholar 

  50. Liu, W. H. et al. MicroRNA-18a prevents estrogen receptor-α expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 136, 683–693 (2009).

    CAS  PubMed  Google Scholar 

  51. Zhao, J. J. et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem. 283, 31079–31086 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Al-Nakhle, H. et al. Estrogen receptor β1 expression is regulated by miR-92 in breast cancer. Cancer Res. 70, 4778–4784 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pandey, D. P. & Picard, D. miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor α mRNA. Mol. Cell Biol. 29, 3783–3790 (2009). References 49–53 illustrate the role of miRNAs in the regulation of the expression of ER subtypes in cancer cells and tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Richter, K. & Buchner, J. Hsp90: chaperoning signal transduction. J. Cell Physiol. 188, 281–290 (2001).

    CAS  PubMed  Google Scholar 

  55. Duong, V. et al. Differential regulation of estrogen receptor α turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res. 67, 5513–5521 (2007).

    CAS  PubMed  Google Scholar 

  56. Li, L., Li, Z., Howley, P. M. & Sacks, D. B. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J. Biol. Chem. 281, 1978–1985 (2006).

    CAS  PubMed  Google Scholar 

  57. Giamas, G. et al. Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer. Nature Med. 17, 715–719 (2011).

    CAS  PubMed  Google Scholar 

  58. Pan, X. et al. Elevated expression of CUEDC2 protein confers endocrine resistance in breast cancer. Nature Med. 17, 708–714 (2011). References 57 and 58 demonstrate how changes in ER protein stability alter cancer response to therapy.

    CAS  PubMed  Google Scholar 

  59. Bocchinfuso, W. P. & Korach, K. S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia 2, 323–334 (1997).

    CAS  PubMed  Google Scholar 

  60. Korach, K. S. Insights from the study of animals lacking functional estrogen receptor. Science 266, 1524–1527 (1994).

    CAS  PubMed  Google Scholar 

  61. Feng, Y., Manka, D., Wagner, K. U. & Khan, S. A. Estrogen receptor-α expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc. Natl Acad. Sci. USA 104, 14718–14723 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bocchinfuso, W. P., Hively, W. P., Couse, J. F., Varmus, H. E. & Korach, K. S. A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-α. Cancer Res. 59, 1869–1876 (1999).

    CAS  PubMed  Google Scholar 

  63. Hewitt, S. C. et al. Lack of ductal development in the absence of functional estrogen receptor α delays mammary tumor formation induced by transgenic expression of ErbB2/neu. Cancer Res. 62, 2798–2805 (2002).

    CAS  PubMed  Google Scholar 

  64. Miermont, A. M., Parrish, A. R. & Furth, P. A. Role of ERα in the differential response of Stat5a loss in susceptibility to mammary preneoplasia and DMBA-induced carcinogenesis. Carcinogenesis 31, 1124–1131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshidome, K., Shibata, M. A., Couldrey, C., Korach, K. S. & Green, J. E. Estrogen promotes mammary tumor development in C3(1)/SV40 large T-antigen transgenic mice: paradoxical loss of estrogen receptorα expression during tumor progression. Cancer Res. 60, 6901–6910 (2000).

    CAS  PubMed  Google Scholar 

  66. Risbridger, G. et al. Evidence that epithelial and mesenchymal estrogen receptor-α mediates effects of estrogen on prostatic epithelium. Dev. Biol. 229, 432–442 (2001).

    CAS  PubMed  Google Scholar 

  67. Bianco, J. J., Handelsman, D. J., Pedersen, J. S. & Risbridger, G. P. Direct response of the murine prostate gland and seminal vesicles to estradiol. Endocrinology 143, 4922–4933 (2002).

    CAS  PubMed  Google Scholar 

  68. Bianco, J. J., McPherson, S. J., Wang, H., Prins, G. S. & Risbridger, G. P. Transient neonatal estrogen exposure to estrogen-deficient mice (aromatase knockout) reduces prostate weight and induces inflammation in late life. Am. J. Pathol. 168, 1869–1878 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Prins, G. S. et al. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor α: studies with αERKO and βERKO mice. Cancer Res. 61, 6089–6097 (2001).

    CAS  PubMed  Google Scholar 

  70. Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102 (1996).

    CAS  PubMed  Google Scholar 

  71. Raghow, S., Hooshdaran, M. Z., Katiyar, S. & Steiner, M. S. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res. 62, 1370–1376 (2002).

    CAS  PubMed  Google Scholar 

  72. Castro-Rivera, E., Samudio, I. & Safe, S. Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J. Biol. Chem. 276, 30853–30861 (2001).

    CAS  PubMed  Google Scholar 

  73. List, H. J. et al. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J. Biol. Chem. 276, 23763–23768 (2001).

    CAS  PubMed  Google Scholar 

  74. Planas-Silva, M. D., Shang, Y., Donaher, J. L., Brown, M. & Weinberg, R. A. AIB1 enhances estrogen-dependent induction of cyclin D1 expression. Cancer Res. 61, 3858–3862 (2001).

    CAS  PubMed  Google Scholar 

  75. Levin, E. R. Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol. Endocrinol. 17, 309–317 (2003).

    CAS  PubMed  Google Scholar 

  76. Driggers, P. H. & Segars, J. H. Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol. Metab. 13, 422–427 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Forster, C. et al. Involvement of estrogen receptor β in terminal differentiation of mammary gland epithelium. Proc. Natl Acad. Sci. USA 99, 15578–15583 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Imamov, O., Lopatkin, N. A. & Gustafsson, J. A. Estrogen receptor β in prostate cancer. N. Engl. J. Med. 351, 2773–2774 (2004).

    PubMed  Google Scholar 

  79. Imamov, O. et al. Estrogen receptorβ regulates epithelial cellular differentiation in the mouse ventral prostate. Proc. Natl Acad. Sci. USA 101, 9375–9380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weihua, Z. et al. A role for estrogen receptor β in the regulation of growth of the ventral prostate. Proc. Natl Acad. Sci. USA 98, 6330–6335 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Antal, M. C., Krust, A., Chambon, P. & Mark, M. Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERβ-null mutant. Proc. Natl Acad. Sci. USA 105, 2433–2438 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dupont, S. et al. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 127, 4277–4291 (2000).

    CAS  PubMed  Google Scholar 

  83. Nakajima, Y. et al. Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERβ and KLF5. Sci. Signal. 4, ra22 (2011). This article demonstrates the tumour suppressive properties of ERβ and describes one of the mechanisms through which ERβ regulates tumour growth.

    PubMed  Google Scholar 

  84. Strom, A. et al. Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc. Natl Acad. Sci. USA 101, 1566–1571 (2004).

    PubMed  PubMed Central  Google Scholar 

  85. Lin, C. Y. et al. Inhibitory effects of estrogen receptor β on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Res. 9, R25 (2007).

    PubMed  PubMed Central  Google Scholar 

  86. Lindberg, M. K. et al. Estrogen receptor (ER)-β reduces ERα-regulated gene transcription, supporting a “ying yang” relationship between ERα and ERβ in mice. Mol. Endocrinol. 17, 203–208 (2003).

    CAS  PubMed  Google Scholar 

  87. Williams, C., Edvardsson, K., Lewandowski, S. A., Strom, A. & Gustafsson, J. A. A genome-wide study of the repressive effects of estrogen receptor β on estrogen receptor α signaling in breast cancer cells. Oncogene 27, 1019–1032 (2008).

    CAS  PubMed  Google Scholar 

  88. Hartman, J. et al. Estrogen receptor β inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res. 66, 11207–11213 (2006).

    CAS  PubMed  Google Scholar 

  89. Thomas, C. G., Strom, A., Lindberg, K. & Gustafsson, J. A. Estrogen receptor β decreases survival of p53-defective cancer cells after DNA damage by impairing G2/M checkpoint signaling. Breast Cancer Res. Treat. 127, 417–427 (2011).

    CAS  PubMed  Google Scholar 

  90. Hershberger, P. A. et al. Estrogen receptor β (ERβ) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. J. Steroid Biochem. Mol. Biol. 116, 102–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hou, Y. F. et al. ERβ exerts multiple stimulative effects on human breast carcinoma cells. Oncogene 23, 5799–5806 (2004).

    CAS  PubMed  Google Scholar 

  92. Zhang, G. et al. Estrogen receptor β functions through nongenomic mechanisms in lung cancer cells. Mol. Endocrinol. 23, 146–156 (2009).

    PubMed  Google Scholar 

  93. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Barone, I., Brusco, L. & Fuqua, S. A. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin. Cancer Res. 16, 2702–2708 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, S. L. et al. ER-α36, a variant of ER-α, promotes tamoxifen agonist action in endometrial cancer cells via the MAPK/ERK and PI3K/Akt pathways. PLoS ONE 5, e9013 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Poola, I. & Speirs, V. Expression of alternatively spliced estrogen receptor α mRNAs is increased in breast cancer tissues. J. Steroid Biochem. Mol. Biol. 78, 459–469 (2001).

    CAS  PubMed  Google Scholar 

  97. Poola, I., Koduri, S., Chatra, S. & Clarke, R. Identification of twenty alternatively spliced estrogen receptor α mRNAs in breast cancer cell lines and tumors using splice targeted primer approach. J. Steroid Biochem. Mol. Biol. 72, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  98. Shi, L. et al. Expression of ER-α36, a novel variant of estrogen receptor α, and resistance to tamoxifen treatment in breast cancer. J. Clin. Oncol. 27, 3423–3429 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Castles, C. G., Fuqua, S. A., Klotz, D. M. & Hill, S. M. Expression of a constitutively active estrogen receptor variant in the estrogen receptor-negative BT-20 human breast cancer cell line. Cancer Res. 53, 5934–5939 (1993).

    CAS  PubMed  Google Scholar 

  100. Desai, A. J. et al. Presence of exon 5-deleted oestrogen receptor in human breast cancer: functional analysis and clinical significance. Br. J. Cancer 75, 1173–1184 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Erenburg, I., Schachter, B., Mira y Lopez, R. & Ossowski, L. Loss of an estrogen receptor isoform (ER α δ 3) in breast cancer and the consequences of its reexpression: interference with estrogen-stimulated properties of malignant transformation. Mol. Endocrinol. 11, 2004–2015 (1997).

    CAS  PubMed  Google Scholar 

  102. Moore, J. T. et al. Cloning and characterization of human estrogen receptor β isoforms. Biochem. Biophys. Res. Commun. 247, 75–78 (1998).

    CAS  PubMed  Google Scholar 

  103. Omoto, Y., Eguchi, H., Yamamoto-Yamaguchi, Y. & Hayashi, S. Estrogen receptor (ER) β1 and ERβcx/β2 inhibit ERα function differently in breast cancer cell line MCF7. Oncogene 22, 5011–5020 (2003).

    CAS  PubMed  Google Scholar 

  104. Peng, B., Lu, B., Leygue, E. & Murphy, L. C. Putative functional characteristics of human estrogen receptor-β isoforms. J. Mol. Endocrinol. 30, 13–29 (2003).

    CAS  PubMed  Google Scholar 

  105. Green, C. A., Peter, M. B., Speirs, V. & Shaaban, A. M. The potential role of ER β isoforms in the clinical management of breast cancer. Histopathology 53, 374–380 (2008).

    CAS  PubMed  Google Scholar 

  106. Shaaban, A. M. et al. Nuclear and cytoplasmic expression of ERβ1, ERβ2, and ERβ5 identifies distinct prognostic outcome for breast cancer patients. Clin. Cancer Res. 14, 5228–5235 (2008).

    CAS  PubMed  Google Scholar 

  107. Saji, S. et al. Expression of estrogen receptor (ER) (β)cx protein in ER(α)-positive breast cancer: specific correlation with progesterone receptor. Cancer Res. 62, 4849–4853 (2002).

    CAS  PubMed  Google Scholar 

  108. Yan, M., Rayoo, M., Takano, E. A. & Fox, S. B. Nuclear and cytoplasmic expressions of ERβ1 and ERβ2 are predictive of response to therapy and alters prognosis in familial breast cancers. Breast Cancer Res. Treat 126, 395–405 (2010).

    PubMed  Google Scholar 

  109. Pettersson, K., Delaunay, F. & Gustafsson, J. A. Estrogen receptor β acts as a dominant regulator of estrogen signaling. Oncogene 19, 4970–4978 (2000).

    CAS  PubMed  Google Scholar 

  110. Wang, X. et al. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nature Cell Biol. 9, 470–478 (2007).

    CAS  PubMed  Google Scholar 

  111. Ye, Y. et al. ERα signaling through slug regulates E-cadherin and EMT. Oncogene 29, 1451–1462 (2010).

    CAS  PubMed  Google Scholar 

  112. Mak, P. et al. ERβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 17, 319–332 (2010). An elegant proof of the anti-migratory and anti-invasive properties of ERβ, and a demonstration of its pivotal role in the early steps of the invasion and metastasis process.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Helguero, L. A. et al. Different roles of estrogen receptors α and β in the regulation of E-cadherin protein levels in a mouse mammary epithelial cell line. Cancer Res. 68, 8695–8704 (2008).

    CAS  PubMed  Google Scholar 

  114. Lindberg, K. et al. Expression of estrogen receptor β increases integrin α1 and integrin β1 levels and enhances adhesion of breast cancer cells. J. Cell Physiol. 222, 156–167 (2010).

    CAS  PubMed  Google Scholar 

  115. Shaaban, A. M. et al. Declining estrogen receptor-β expression defines malignant progression of human breast neoplasia. Am. J. Surg. Pathol. 27, 1502–1512 (2003).

    PubMed  Google Scholar 

  116. Skliris, G. P. et al. Reduced expression of oestrogen receptor β in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J. Pathol. 201, 213–220 (2003).

    CAS  PubMed  Google Scholar 

  117. Leung, Y. K., Mak, P., Hassan, S. & Ho, S. M. Estrogen receptor (ER)-β isoforms: a key to understanding ER-β signaling. Proc. Natl Acad. Sci. USA 103, 13162–13167 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Boyd, S. Remarks on oophorectomy in the treatment of cancer of the breast. Br. Med. J. 1, 257–262 (1899).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bosland, M. C. et al. Chemoprevention strategies for prostate cancer. Eur. J. Cancer Prev. 11, S18–S27 (2002).

    PubMed  Google Scholar 

  120. Couse, J. F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417 (1999).

    CAS  PubMed  Google Scholar 

  121. Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. J. Clin. Invest. 116, 561–570 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mah, V. et al. Aromatase expression predicts survival in women with early-stage non small cell lung cancer. Cancer Res. 67, 10484–10490 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Henderson, B. E. & Feigelson, H. S. Hormonal carcinogenesis. Carcinogenesis 21, 427–433 (2000).

    CAS  PubMed  Google Scholar 

  124. Jarred, R. A. et al. Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones. Cancer Epidemiol. Biomarkers Prev. 11, 1689–1696 (2002).

    CAS  PubMed  Google Scholar 

  125. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    CAS  PubMed  Google Scholar 

  126. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  127. Johnston, S. R. & Dowsett, M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nature Rev. Cancer 3, 821–831 (2003).

    CAS  Google Scholar 

  128. Smith, M. R. et al. Selective aromatase inhibition for patients with androgen-independent prostate carcinoma. Cancer 95, 1864–1868 (2002).

    CAS  PubMed  Google Scholar 

  129. Leygue, E., Dotzlaw, H., Watson, P. H. & Murphy, L. C. Altered estrogen receptor α and β messenger RNA expression during human breast tumorigenesis. Cancer Res. 58, 3197–3201 (1998).

    CAS  PubMed  Google Scholar 

  130. Roger, P. et al. Dissociated overexpression of cathepsin D and estrogen receptor α in preinvasive mammary tumors. Hum. Pathol. 31, 593–600 (2000).

    CAS  PubMed  Google Scholar 

  131. Chi, A., Chen, X., Chirala, M. & Younes, M. Differential expression of estrogen receptor β isoforms in human breast cancer tissue. Anticancer Res. 23, 211–216 (2003).

    CAS  PubMed  Google Scholar 

  132. Esslimani-Sahla, M. et al. Increased estrogen receptor βcx expression during mammary carcinogenesis. Clin. Cancer Res. 11, 3170–3174 (2005).

    CAS  PubMed  Google Scholar 

  133. Bonkhoff, H., Fixemer, T., Hunsicker, I. & Remberger, K. Progesterone receptor expression in human prostate cancer: correlation with tumor progression. Prostate 48, 285–291 (2001).

    CAS  PubMed  Google Scholar 

  134. Hogdall, E. V. et al. Prognostic value of estrogen receptor and progesterone receptor tumor expression in Danish ovarian cancer patients: from the 'MALOVA' ovarian cancer study. Oncol. Rep. 18, 1051–1059 (2007).

    PubMed  Google Scholar 

  135. Issa, R. M. et al. Estrogen receptor gene amplification occurs rarely in ovarian cancer. Mod. Pathol. 22, 191–196 (2009).

    CAS  PubMed  Google Scholar 

  136. Jazaeri, A. A. et al. Well-differentiated endometrial adenocarcinomas and poorly differentiated mixed mullerian tumors have altered ER and PR isoform expression. Oncogene 20, 6965–6969 (2001).

    CAS  PubMed  Google Scholar 

  137. Saegusa, M. & Okayasu, I. Changes in expression of estrogen receptors α and β in relation to progesterone receptor and pS2 status in normal and malignant endometrium. Jpn. J. Cancer Res. 91, 510–518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tan, D. S., Lambros, M. B., Marchio, C. & Reis-Filho, J. S. ESR1 amplification in endometrial carcinomas: hope or hyperbole? J. Pathol. 216, 271–274 (2008).

    CAS  PubMed  Google Scholar 

  139. Critchley, H. O. et al. Wild-type estrogen receptor (ERβ1) and the splice variant (ERβcx/β2) are both expressed within the human endometrium throughout the normal menstrual cycle. J. Clin. Endocrinol. Metab. 87, 5265–5273 (2002).

    CAS  PubMed  Google Scholar 

  140. Skrzypczak, M. et al. Evaluation of mRNA expression of estrogen receptor β and its isoforms in human normal and neoplastic endometrium. Int. J. Cancer 110, 783–787 (2004).

    CAS  PubMed  Google Scholar 

  141. Suzuki, F. et al. Loss of estrogen receptor β isoform expression and its correlation with aberrant DNA methylation of the 5′-untranslated region in human epithelial ovarian carcinoma. Cancer Sci. 99, 2365–2372 (2008).

    CAS  PubMed  Google Scholar 

  142. Jassam, N., Bell, S. M., Speirs, V. & Quirke, P. Loss of expression of oestrogen receptor β in colon cancer and its association with Dukes' staging. Oncol. Rep. 14, 17–21 (2005).

    CAS  PubMed  Google Scholar 

  143. Shah, Y. M. & Rowan, B. G. The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (α) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol. Endocrinol. 19, 732–748 (2005).

    CAS  PubMed  Google Scholar 

  144. Smith, C. L. & O'Malley, B. W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25, 45–71 (2004).

    CAS  PubMed  Google Scholar 

  145. Picard, N. et al. Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor β. Mol. Endocrinol. 22, 317–330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sauve, K., Lepage, J., Sanchez, M., Heveker, N. & Tremblay, A. Positive feedback activation of estrogen receptors by the CXCL12-CXCR4 pathway. Cancer Res. 69, 5793–5800 (2009).

    CAS  PubMed  Google Scholar 

  147. Skliris, G. P. et al. Immunohistochemical validation of multiple phospho-specific epitopes for estrogen receptor α (ERα) in tissue microarrays of ERα positive human breast carcinomas. Breast Cancer Res. Treat 118, 443–453 (2009).

    CAS  PubMed  Google Scholar 

  148. Holm, C. et al. Phosphorylation of the oestrogen receptor α at serine 305 and prediction of tamoxifen resistance in breast cancer. J. Pathol. 217, 372–379 (2009).

    CAS  PubMed  Google Scholar 

  149. Kok, M. et al. Estrogen receptor-α phosphorylation at serine-118 and tamoxifen response in breast cancer. J. Natl Cancer Inst. 101, 1725–1729 (2009).

    CAS  PubMed  Google Scholar 

  150. Murphy, L. et al. Phospho-serine-118 estrogen receptor-α detection in human breast tumors in vivo. Clin. Cancer Res. 10, 1354–1359 (2004).

    CAS  PubMed  Google Scholar 

  151. Murphy, L. C., Niu, Y., Snell, L. & Watson, P. Phospho-serine-118 estrogen receptor-α expression is associated with better disease outcome in women treated with tamoxifen. Clin. Cancer Res. 10, 5902–5906 (2004).

    CAS  PubMed  Google Scholar 

  152. Sarwar, N. et al. Phosphorylation of ERα at serine 118 in primary breast cancer and in tamoxifen-resistant tumours is indicative of a complex role for ERα phosphorylation in breast cancer progression. Endocr. Relat. Cancer 13, 851–861 (2006).

    CAS  PubMed  Google Scholar 

  153. Yamashita, H. et al. Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer. Breast Cancer Res. 7, R753–R764 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yamashita, H. et al. Low phosphorylation of estrogen receptor α (ERα) serine 118 and high phosphorylation of ERα serine 167 improve survival in ER-positive breast cancer. Endocr. Relat. Cancer 15, 755–763 (2008).

    CAS  PubMed  Google Scholar 

  155. Hamilton-Burke, W. et al. Phosphorylation of estrogen receptor β at serine 105 is associated with good prognosis in breast cancer. Am. J. Pathol. 177, 1079–1086 (2010). References 147–155 provide clinical evidence that the phosphorylation status of ER subtypes can be used in prognosis of breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Platet, N., Cathiard, A. M., Gleizes, M. & Garcia, M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit. Rev. Oncol. Hematol. 51, 55–67 (2004).

    PubMed  Google Scholar 

  157. Butt, A. J., McNeil, C. M., Musgrove, E. A. & Sutherland, R. L. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr. Relat. Cancer 12, S47–S59 (2005).

    CAS  PubMed  Google Scholar 

  158. Musgrove, E. A. et al. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS ONE 3, e2987 (2008).

    PubMed  PubMed Central  Google Scholar 

  159. Nehra, R. et al. BCL2 and CASP8 regulation by NF-κB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J. 24, 2040–2055 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hurtado, A. et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456, U663–U693 (2008). This reference indicates the crucial role of co-regulatory proteins in determining ER-mediated transcriptional responses.

    Google Scholar 

  161. Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nature Rev. Cancer 2, 101–112 (2002).

    Google Scholar 

  162. Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    CAS  PubMed  Google Scholar 

  163. Ring, A. & Dowsett, M. Mechanisms of tamoxifen resistance. Endocr. Relat. Cancer 11, 643–658 (2004).

    CAS  PubMed  Google Scholar 

  164. Ishii, Y. et al. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a pro-apoptotic unfolded protein response. Clin. Cancer Res. 17, 2292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Scriven, P. et al. Activation and clinical significance of the unfolded protein response in breast cancer. Br. J. Cancer 101, 1692–1698 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Honma, N. et al. Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 26, 3727–3734 (2008).

    PubMed  Google Scholar 

  167. Novelli, F. et al. A divergent role for estrogen receptor-β in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. Breast Cancer Res. 10, R74 (2008). References 106, 166 and 167 represent three recent studies which, by analysing large number of samples using well-validated antibodies, provide clinical evidence for the prognostic and predictive role of ERβ in breast cancer.

    PubMed  PubMed Central  Google Scholar 

  168. Horvath, G., Leser, G., Hahlin, M. & Henriksson, M. Exon deletions and variants of human estrogen receptor mRNA in endometrial hyperplasia and adenocarcinoma. Int. J. Gynecol. Cancer 10, 128–136 (2000).

    PubMed  Google Scholar 

  169. Kawai, H. et al. Estrogen receptor α and β are prognostic factors in non-small cell lung cancer. Clin. Cancer Res. 11, 5084–5089 (2005).

    CAS  PubMed  Google Scholar 

  170. Nose, N. et al. Association between estrogen receptor-β expression and epidermal growth factor receptor mutation in the postoperative prognosis of adenocarcinoma of the lung. J. Clin. Oncol. 27, 411–417 (2009).

    CAS  PubMed  Google Scholar 

  171. Nose, N., Uramoto, H., Iwata, T., Hanagiri, T. & Yasumoto, K. Expression of estrogen receptor β predicts a clinical response and longer progression-free survival after treatment with EGFR-TKI for adenocarcinoma of the lung. Lung Cancer 71, 350–355 (2010).

    PubMed  Google Scholar 

  172. Raso, M. G. et al. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin. Cancer Res. 15, 5359–5368 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Schwartz, A. G. et al. Nuclear estrogen receptor β in lung cancer: expression and survival differences by sex. Clin. Cancer Res. 11, 7280–7287 (2005).

    CAS  PubMed  Google Scholar 

  174. Skov, B. G., Fischer, B. M. & Pappot, H. Oestrogen receptor β over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer 59, 88–94 (2008).

    PubMed  Google Scholar 

  175. Wu, C. T., Chang, Y. L., Shih, J. Y. & Lee, Y. C. The significance of estrogen receptor β in 301 surgically treated non-small cell lung cancers. J. Thorac. Cardiovasc. Surg. 130, 979–986 (2005).

    CAS  PubMed  Google Scholar 

  176. Alonso, L. et al. Gonadotropin and steroid receptors as prognostic factors in advanced ovarian cancer: a retrospective study. Clin. Transl. Oncol. 11, 748–752 (2009).

    CAS  PubMed  Google Scholar 

  177. Darb-Esfahani, S. et al. Estrogen receptor 1 mRNA is a prognostic factor in ovarian carcinoma: determination by kinetic PCR in formalin-fixed paraffin-embedded tissue. Endocr. Relat. Cancer 16, 1229–1239 (2009).

    PubMed  Google Scholar 

  178. Faggad, A. et al. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J. Pathol. 220, 382–391 (2010).

    CAS  PubMed  Google Scholar 

  179. Zamagni, C. et al. Oestrogen receptor 1 mRNA is a prognostic factor in ovarian cancer patients treated with neo-adjuvant chemotherapy: determination by array and kinetic PCR in fresh tissue biopsies. Endocr. Relat. Cancer 16, 1241–1249 (2009).

    CAS  PubMed  Google Scholar 

  180. Burges, A. et al. Prognostic significance of estrogen receptor α and β expression in human serous carcinomas of the ovary. Arch. Gynecol. Obstet. 281, 511–517 (2010).

    CAS  PubMed  Google Scholar 

  181. Shabani, N. et al. Prognostic significance of oestrogen receptor α (ERα) and β (ERβ), progesterone receptor A (PR-A) and B (PR-B) in endometrial carcinomas. Eur. J. Cancer 43, 2434–2444 (2007).

    CAS  PubMed  Google Scholar 

  182. Suthipintawong, C., Wejaranayang, C. & Vipupinyo, C. Prognostic significance of ER, PR, Ki67, c-erbB-2, and p53 in endometrial carcinoma. J. Med. Assoc. Thai 91, 1779–1784 (2008).

    PubMed  Google Scholar 

  183. Barone, M. et al. Dietary-induced ERβ upregulation counteracts intestinal neoplasia development in intact male ApcMin/+ mice. Carcinogenesis 31, 269–274 (2010).

    CAS  PubMed  Google Scholar 

  184. Giroux, V., Lemay, F., Bernatchez, G., Robitaille, Y. & Carrier, J. C. Estrogen receptor β deficiency enhances small intestinal tumorigenesis in ApcMin/+ mice. Int. J. Cancer 123, 303–311 (2008).

    CAS  PubMed  Google Scholar 

  185. Martineti, V. et al. ERβ is a potent inhibitor of cell proliferation in the HCT8 human colon cancer cell line through regulation of cell cycle components. Endocr. Relat. Cancer 12, 455–469 (2005).

    CAS  PubMed  Google Scholar 

  186. Wilkins, H. R., Doucet, K., Duke, V., Morra, A. & Johnson, N. Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2. Tumour Biol. 31, 16–22 (2010).

    CAS  PubMed  Google Scholar 

  187. Bardin, A. et al. Involvement of estrogen receptor β in ovarian carcinogenesis. Cancer Res. 64, 5861–5869 (2004).

    CAS  PubMed  Google Scholar 

  188. Fan, X. et al. Gonadotropin-positive pituitary tumors accompanied by ovarian tumors in aging female ERβ−/− mice. Proc. Natl Acad. Sci. USA 107, 6453–6458 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratory is supported by the Welch Foundation and the Texas Emergency Technology Fund, under Agreement No 300-9-1958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Åke Gustafsson.

Ethics declarations

Competing interests

J.-A.G. is a consultant with Karo Bio AB and BioNovo. C.T. declares no competing financial interests.

Related links

Glossary

Co-activators

Proteins that increase gene expression by binding to a transcription factor that binds DNA through its DNA-binding domain.

Co-repressors

Proteins that decrease gene expression by binding to a transcription factor that contains a DNA-binding domain.

'Pure' anti-oestrogens

Drugs that bind the oestrogen receptor, thereby blocking the effect of oestrogen, but that have no detectable oestrogen-like effects. Most have a steroidal structure.

Gleason grade

The assignment of a number between 1 and 5 to indicate the degree of differentiation of the cells in the cancer specimen. It is used to establish the Gleason score. Cancers with a higher Gleason score are more aggressive and have a worse prognosis.

Hormone replacement therapy

(HRT). The administration of hormones to correct a deficiency, such as postmenopausal oestrogen replacement therapy.

SERMs

Drugs that bind the oestrogen receptor and thereby block the effects of oestrogen on tissues such as the breast but that function similarly to oestrogen in other tissues, such as the endometrium. These drugs are not steroidal in structure.

Aromatase inhibitors

Drugs that block aromatase, the enzyme that converts androgens to oestrogens in tissues including the breast and adipose tissue.

Unfolded protein response

A cellular response to stress that senses misfolded proteins in the endoplasmic reticulum. It activates pathways that help cells to survive the toxicity that is caused by unfolded proteins or to activate mechanisms of cell death.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, C., Gustafsson, JÅ. The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 11, 597–608 (2011). https://doi.org/10.1038/nrc3093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3093

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer