Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Desmosomes: new perpetrators in tumour suppression

Abstract

Adherens junctions, which are intercellular adhesive complexes that are crucial for maintaining epithelial homeostasis, are downregulated in many cancers to promote tumour progression. However, the role of desmosomes — adhesion complexes that are related to adherens junctions — in carcinogenesis has remained elusive. Recent studies using mouse genetic approaches have uncovered a role for desmosomes in tumour suppression, demonstrating that desmosome downregulation occurs before that of adherens junctions to drive tumour development and early invasion, suggesting a two-step model of adhesion dysfunction in cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Desmosome deficiency can promote cancer in multiple ways.
Figure 2: The p53–p63 pathway regulates homeostasis in epithelial tissues.
Figure 3: Desmosome downregulation is one in a series of steps occurring during cancer development.

Similar content being viewed by others

References

  1. Cooper, G. M. Oncogenes (Jones and Barlett Publishers, Boston, 1995).

    Google Scholar 

  2. Schock, F. & Perrimon, N. Molecular mechanisms of epithelial morphogenesis. Annu. Rev. Cell Dev. Biol. 18, 463–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, e101–e108 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Simpson, C. L. & Green, K. J. Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127, 2499–2515 (2007).

    Article  PubMed  Google Scholar 

  5. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, C. P., Psoy, S., Ben-Shaul, A., Shapiro, L. & Honig, B. H. Specificity of cell-cell adhesion by classical cadherins: critical role for low-affinity dimerization through β–strand swapping. Proc. Natl Acad. Sci. USA 102, 8531–8536 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Pertz, O. et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 18, 1738–1747 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yap, A. S., Brieher, W. M. & Gumbiner, B. M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711–1717 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reynolds, A. B. et al. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol. Cell. Biol. 14, 8333–8342 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hulsken, J., Birchmeier, W. & Behrens, J. E-cadherin and APC compete for the interaction with β-catenin and the cytoskeleton. J. Cell Biol. 127, 2061–2069 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA 92, 8813–8817 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rubinfeld, B., Souza, B., Albert, I., Munemitsu, S. & Polakis, P. The APC protein and E-cadherin form similar but independent complexes with α-catenin, β-catenin, and plakoglobin. J. Biol. Chem. 270, 5549–5555 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin-catenin-actin complex. Cell 123, 889–901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. D'Souza-Schorey, C. Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol. 15, 19–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Bremnes, R. M. et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J. Clin. Oncol. 20, 2417–2428 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Rakha, E. A., Abd El Rehim, D., Pinder, S. E., Lewis, S. A. & Ellis, I. O. E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance. Histopathology 46, 685–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Syrigos, K. N. et al. E-cadherin expression in bladder cancer using formalin-fixed, paraffin-embedded tissues: correlation with histopathological grade, tumour stage and survival. Int. J. Cancer 64, 367–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Wijnhoven, B. P., Pignatelli, M., Dinjens, W. N. & Tilanus, H. W. Reduced p120ctn expression correlates with poor survival in patients with adenocarcinoma of the gastroesophageal junction. J. Surg. Oncol. 92, 116–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, Z. et al. Downregulation and abnormal expression of E-cadherin and β-catenin in nasopharyngeal carcinoma: close association with advanced disease stage and lymph node metastasis. Hum. Pathol. 30, 458–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Derksen, P. W. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10, 437–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Davis, M. A. & Reynolds, A. B. Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev. Cell 10, 21–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Moreno, M., Song, W., Pasolli, H. A., Williams, S. E. & Fuchs, E. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc. Natl Acad. Sci. USA 105, 15399–15404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobielak, A. & Fuchs, E. Links between α-catenin, NF-κB, and squamous cell carcinoma in skin. Proc. Natl Acad. Sci. USA 103, 2322–2327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kobielak, A. & Fuchs, E. α-catenin: at the junction of intercellular adhesion and actin dynamics. Nature Rev. Mol. Cell Biol. 5, 614–625 (2004).

    Article  CAS  Google Scholar 

  32. Green, K. J. & Gaudry, C. A. Are desmosomes more than tethers for intermediate filaments? Nature Rev. Mol. Cell Biol. 1, 208–216 (2000).

    Article  CAS  Google Scholar 

  33. Thomason, H. A., Scothern, A., McHarg, S. & Garrod, D. R. Desmosomes: adhesive strength and signalling in health and disease. Biochem. J. 429, 419–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Chitaev, N. A. & Troyansovsky, S. M. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J. Cell Biol. 138, 193–201 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heupel, W. M., Zillikens, D., Drenckhahn, D. & Waschke, J. Pemphigus vulgaris IgG directly inhibit desmoglein3-mediated transinteraction. J. Immunol. 181, 1825–1834 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Syed, S. E. et al. Molecular interactions between desmosomal cadherins. Biochem. J. 362, 317–327 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Waschke, J., Bruggeman, P., Baumgartner, W., Zillkens, D. & Drenckhahn, D. Pemphigus foliaceus IgG causes dissociation of desmoglein 1-containing junctions without blocking desmoglein 1 transinteraction. J. Clin. Invest. 115, 3157–3165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koeser, J., Troyanovsky, S. M., Grund, C. & Franke, W. W. De novo formation of desmosomes in cultured cells upon transfection of genes encoding specific desmosomal components. Exp. Cell Res. 285, 114–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Nie, Z., Merritt, A., Rouhi-Parkouhi, M., Tabernero, L. & Garrod, D. Membrane-impermeable cross-linking provides evidence for homophilic, isoform-specific binding of desmosomal cadherins in epithelial cells. J. Biol. Chem. 286, 2143–2154 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Runswick, S. K., O'Hare, M. J., Jones, L., Streuli, C. H. & Garrod, D. R. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biol. 3, 823–830 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Witcher, L. L. et al. Desmosomal cadherin binding domains of plakoglobin. J. Biol. Chem. 271, 10904–10909 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Mathur, M., Goodwin, L. & Cowin, P. Interactions of the cytoplasmic domain of the desmosomal cadherin Dsg1 with plakoglobin. J. Biol. Chem., 269, 14075–14080 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Roh, J. Y. & Stanley, J. R. Plakoglobin binding by human Dsg3 (pemphigus vulgaris antigen) in keratinocytes requires the cadherin-like intracytoplasmic segment. J. Invest. Dermatol. 104, 720–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Troyanovsky, S. M. et al. Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage. J. Cell Biol. 127, 151–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Bonne, S. et al. Defining desmosomal plakophilin-3 interactions. J. Cell Biol. 161, 403–416 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, X., Bonne, S., Hatzfeld, M., van Roy, F. & Green, K. J. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and β-catenin signaling. J. Biol. Chem. 277, 10512–10522 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hatzfeld, M., Haffner, C., Schulze, K. & Vinzens, U. The function of plakophilin 1 in desmosome assembly and actin filament organization. J. Cell Biol. 149, 209–222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butz, S., Stappert, J., Weissig, H. & Kemler, R. Plakoglobin and b-catenin: distinct but closely related. Science 257, 1142–1144 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. McCrea, P. D., Turck, C. W. & Gumbiner, B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254, 1359–1361 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Nathke, I. S., Hinck, L., Swedlow, J. R., Papkoff, J. & Nelson, W. J. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J. Cell Biol. 125, 1341–1352 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Zhurinsky, J., Shtutman, M. & Ben-Ze'ev, A. Plakoglobin and β-catenin: protein interaction, regulation and biological roles. J. Cell Sci. 113, 3127–3139 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Conacci-Sorrell, M. E. et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058–2072 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mertens, C., Kuhn, C. & Franke, W. W. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomsal plaque. J. Cell Biol. 135, 1009–1025 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Bornslaeger, E. A. et al. Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell-cell borders. J. Cell Sci. 114, 727–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Kowalczyk, A. P. et al. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J. Cell Biol. 139, 773–784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kouklis, P. D., Hutton, E. & Fuchs, E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell Biol. 127, 1049–1060 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Smith, E. A. & Fuchs, E. Defining the interactions between intermediate filaments and desmosomes. J. Cell Biol. 141, 1229–1241 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ihrie, R. A. et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 120, 843–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Attardi, L. D. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carroll, D. K., Brugge, J. S. & Attardi, L. D. p63, cell adhesion, and survival. Cell Cycle 6, 255–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cell 7, 363–373 (2005).

    CAS  Google Scholar 

  62. Den, Z., Cheng, X., Merched-Sauvage, M. & Koch, P. J. Desmocollin 3 is required for pre-implantation development of the mouse embryo. J. Cell Sci. 199, 482–489 (2006).

    Article  CAS  Google Scholar 

  63. Eshkind, L. et al. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur. J. Cell Biol. 81, 592–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bierkamp, C., Mclaughlin, K. J., Schwarz, H., Huber, O. & Kemler, R. Embryonic heart and skin defects in mice lacking plakglobin. Dev. Biol. 180, 780–785 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Ruiz, P. et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Koch, P. J. et al. Targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J. Cell Biol. 137, 1091–1102 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nature Cell Biol. 3, 1076–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Chidgey, M. et al. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol. 155, 821–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, J., Den, Z. & Koch, P. J. Loss of desmocollin 3 in mice leads to epidermal blistering. J. Cell Sci. 121, 2844–2849 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Chidgey, M. Desmosomes and disease: an update. Histol. Histopathol. 17, 1179–1192 (2002).

    CAS  PubMed  Google Scholar 

  72. Brennan, D. & Mahoney, M. G. Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarrary based study. Cell Adh. Migr. 3, 148–154 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen, Y. J. et al. DSG3 is overexpressed in head neck cancer and is a potential moelcular target for inhibition of oncogenesis. Oncogene 26, 467–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Furukawa, C. et al. Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res. 65, 7102–7110 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Kurzen, H., Munzing, I. & Hartschuh, W. Expression of desmosomal proteins in squamous cell carcinomas of the skin. J. Cutan. Pathol. 30, 621–630 (2003).

    Article  PubMed  Google Scholar 

  76. Breuninger, S. et al. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. Am. J. Pathol. 176, 2509–2519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alazawi, W. O., Morris, L. S., Stanley, M. A., Garrod, D. R. & Coleman, N. Altered expression of desmosomal components in high-grade squamous intraepithelial lesions of the cervix. Virchows Arch. 443, 51–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Alroy, J., Pauli, B. U. & Weinstein, R. S. Correlation between numbers of desmosomes and the aggressiveness of transitional cell carcinoma in human urinary bladder. Cancer 47, 104–112 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. de Boer, C. J. et al. Changing roles of cadherins and catenins during progression of squamous intraepithelial lesions in the uterine cervix. Am. J. Pathol. 155, 505–515 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Demirag, G. G., Sullu, Y., Gurgenyatagi, D., Okumus, N. O. & Yucel, I. Expression of plakophilins (PKP1, PKP2, and PKP3) in gastric cancers. Diagn. Pathol. 6, 1 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harada, T., Shinohara, M., Nakamura, S., Shimada, M. & Oka, M. Immunohistochemical detection of desmosomes in oral squamous cell carcinomas: correlation with differentiation, mode of invasion, and metastatic potential. Int. J. Oral Maxillofac. Surg. 21, 346–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Hiraki, A. et al. Immunohistochemical staining of desmosomal components in oral squamous cell carcinomas and its association with tumour behaviour. Br. J. Cancer 73, 1491–1497 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kocher, O., Amaudruz, M., Schindler, A. M. & Gabbiani, G. Desmosomes and gap junctions in precarcinomatous and carcinomatous conditions of squamous epithelia. An electron microscopic and morphometrical study. J. Submicrosc. Cytol. 13, 267–281 (1981).

    CAS  PubMed  Google Scholar 

  84. Nei, H. et al. Expression of component desmosomal proteins in uterine endometrial carcinoma and their relation to cellular differentiation. Cancer 78, 461–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Tada, H., Hatoko, M., Tanaka, A., Kuwahara, M. & Muramatsu, T. Expression of desmoglein I and plakoglobin in skin carcinomas. J. Cutan. Pathol. 27, 24–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Biedermann, K. et al. Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J. Pathol. 207, 199–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Depondt, J., Shabana, A. H., Florescu-Zorila, S., Gehanno, P. & Forest, N. Down-regulation of desmosomal molecules in oral and pharyngeal squamous cell carcinomas as a marker for tumour growth and distant metastasis. Eur. J. Oral Sci. 107, 183–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Kahn, K. et al. Desmocollin switching in colorectal cancer. Br. J. Cancer 95, 1367–1370 (2006).

    Article  CAS  Google Scholar 

  89. Oshiro, M. M. et al. Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res. 7, R669–R680 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Papagerakis, S. et al. Altered desmoplakin expression at transcriptional and protein levels provides prognostic information in human oropharyngeal cancer. Hum. Pathol. 40, 1320–1329 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Shiina, H. et al. Functional loss of the γ-catenin gene through epigenetic and genetic pathways in human prostate cancer. Cancer Res. 65, 2130–2138 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Sobolik-Delmaire, T., Katafiasz, D., Keim, S. A., Mahoney, M. G. & Wahl, J. K. Decreased plakophilin-1 expression promotes increased motility in head and neck squamous cell carcinoma cells. Cell Commun. Adhes. 14, 99–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Winn, R. A. et al. γ-catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21, 7497–7506 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Yashiro, M., Nishioka, N. & Hirakawa, K. Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. Eur. J. Cancer 42, 2397–2403 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Wong, M. P. et al. Loss of desmoglein1 expression associated with worse prognosis in head and neck squamous cell carcinoma patients. Pathology 40, 611–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Collins, J. E., Taylor, I. & Garrod, D. R. A study of desmosomes in colorectal carcinoma. Br. J. Cancer 62, 796–805 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hakimelahi, S. et al. Plakoglobin regulates the expression of the anti-apoptotic protein BCL-2. J. Biol. Chem. 275, 10905–10911 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kolligs, F. T. et al. γ-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of β-catenin. Genes Dev. 14, 1319–1331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brennan, D. et al. Suprabasal Dsg2 expression in transgenic mouse skin congers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J. Cell Sci. 120, 758–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Tselepis, C., Chidgey, M., North, A. & Garrod, D. Desmosomal adhesion inhibits invasive behavior. Proc. Natl Acad. Sci. USA 95, 8064–8069 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Simcha, I., Geiger, B., Yehuda-Levenberg, S., Salomon, D. & Ben-Ze'ev, A. Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J. Cell Biol. 133, 199–209 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Reiger-Christ, K. M. et al. Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential. Br. J. Cancer 92, 2153–2159 (2005).

    Article  CAS  Google Scholar 

  103. De Bruin, A. et al. Loss of invasiveness in squamous cell carcinoma cells overexpressing desmosomal cadherins. Cell Adhes. Commun. 7, 13–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Kundu, S. T. et al. Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis. Int. J. Cancer 123, 2303–2314 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Caca, K. et al. β- and γ-catenin mutations, but not E-cadherin inactivation, underlie T-cell factor/lymphoid enhancer factor transcriptional deregulation in gastric and pancreatic cancer. Cell Growth Differ. 10, 369–376 (1999).

    CAS  PubMed  Google Scholar 

  106. Chun, M. G. & Hanahan, D. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis. PLoS Genet. 6, e1001120 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Lewis, J. E., Jensen, P. J. & Wheelock, M. J. Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J. Invest. Dermatol. 102, 870–877 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Beaudry, V. G. et al. Loss of the p53/p63 regulated desmosomal protein Perp promotes tumorigenesis. PLoS Genet. 6, e1001168 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Melnikova, V. O. & Ananthaswamy, H. N. Cellular and molecular events leading to the development of skin cancer. Mutat. Res. 571, 91–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Karnovsky, A. & Klymkowsky, M. W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc. Natl Acad. Sci. USA 92, 4522–4526 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Klymkowsky, M. W., Williams, B. O., Barish, G. D., Varmus, H. E. & Vourgourakis, Y. E. Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling. Mol. Biol. Cell 10, 3151–3169 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Merriam, J. M., Rubenstein, A. B. & Klymkowsky, M. W. Cytoplasmically anchored plakoglobin induces a WNT-like phenotype in Xenopus. Dev. Biol. 185, 67–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Miller, J. R. & Moon, R. T. Analysis of the signaling activities of localization mutants of β-catenin during axis specification in Xenopus. J. Cell Biol. 139, 229–243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol. 141, 1433–1448 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, L., Chapman, K., Hu, X., Wong, A. & Pasdar, M. Modulation of the oncogenic potential of β-catenin by the subcellular distribution of plakoglobin. Mol. Carcinog. 46, 824–838 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Salomon, D. et al. Regulation of β-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J. Cell Biol. 139, 1325–1335 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miravet, S. et al. Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates β-catenin-mediated transcription. Mol. Cell. Biol. 23, 7391–7402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhurinsky, J., Shtutman, M. & Ben-Ze'ev, A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by β-catenin and plakoglobin. Mol. Cell. Biol. 20, 4238–4252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96, 5522–5527 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Williamson, L. et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J. 25, 3298–3309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maeda, O. et al. Plakoglobin (γ-catenin) has TCF/LEF family-dependent transcriptional activity in β-catenin-deficient cell line. Oncogene 23, 964–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Teuliere, J. et al. β-catenin-dependent and -independent effects of DeltaN-plakoglobin on epidermal growth and differentiation. Mol. Cell. Biol. 24, 8649–8661 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Garcia-Gras, E. et al. Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest. 116, 2012–2021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, J. et al. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling. Mol. Cell. Biol. 31, 1134–1144 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Martin, E. D., Moriarty, M. A., Byrnes, L. & Grealy, M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev. Biol. 327, 83–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Schmidt, A. et al. Plakophilins 1a and 1b: widespread nuclear proteins recruited in specific epithelial cells as desmosomal plaque components. Cell Tissue Res. 290, 481–499 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Sobolik-Delmaire, T., Reddy, R., Pashaj, A., Roberts, B. J. & Wahl, J. K. Plakophilin-1 localizes to the nucleus and interacts with single-stranded DNA. J. Invest. Dermatol. 130, 2638–2646 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Wolf, A. et al. Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J. Cell Biol. 188, 463–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hofmann, I. et al. Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol. Biol. Cell 17, 1388–1398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Papagerakis, S., Shabana, A. H., Depondt, J., Gehanno, P. & Forest, N. Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. Hum. Pathol. 34, 565–572 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Berkowitz, P. et al. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J. Biol. Chem. 280, 23778–23784 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Wan, H., South, A. P. & Hart, I. R. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference. Exp. Cell Res. 313, 2336–2344 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Garrod, D. R., Berika, M. Y., Bardsley, W. F., Holmes, D. & Tabernero, L. Hyper-adhesion in desmosomes: its regulation in wound healing and possible relationship to cadherin crystal structure. J. Cell Sci. 118, 5743–5754 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Kimura, T. E., Merritt, A. J. & Garrod, D. R. Calcium-independent desmosomes of keratinocytes are hyper-adhesive. J. Invest. Dermatol. 127, 775–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Luthra, R. et al. Gene expression profiling of localized esophageal carcinomas: association with pathologic response to preoperative chemoradiation. J. Clin. Oncol. 24, 259–267 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.L.D. is supported by the American Cancer Society New England-SpinOdyssey Postdoctoral Fellowship. L.D.A. is supported by the US National Cancer Institute (NCI) (R01 CA093665). The authors would like to thank K. Bieging, D. Jiang and S. Baron for thoughtful comments on the manuscript. The authors apologize to those authors whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura D. Attardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Laura D. Attardi's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dusek, R., Attardi, L. Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer 11, 317–323 (2011). https://doi.org/10.1038/nrc3051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3051

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer