Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

ABC transporters in cancer: more than just drug efflux pumps

Abstract

Multidrug transporter proteins are best known for their contributions to chemoresistance through the efflux of anticancer drugs from cancer cells. However, a considerable body of evidence also points to their importance in cancer extending beyond drug transport to fundamental roles in tumour biology. Currently, much of the evidence for these additional roles is correlative and definitive studies are needed to confirm causality. We propose that delineating the precise roles of these transporters in tumorigenesis and treatment response will be important for the development of more effective targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ABC transporters in tumour-promoting lipid signalling pathways.

Similar content being viewed by others

References

  1. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).

    CAS  Google Scholar 

  2. Dean, M. The genetics of ATP-binding cassette transporters. Methods Enzymol. 400, 409–429 (2005).

    CAS  PubMed  Google Scholar 

  3. Albrecht, C. & Viturro, E. The ABCA subfamily – gene and protein structures, functions and associated hereditary diseases. Pflugers Arch. 453, 581–589 (2007).

    CAS  PubMed  Google Scholar 

  4. Mack, J. T., Brown, C. B. & Tew, K. D. ABCA2 as a therapeutic target in cancer and nervous system disorders. Expert Opin. Ther. Targets. 12, 491–504 (2008).

    CAS  PubMed  Google Scholar 

  5. Takahashi, K. et al. ABC proteins: key molecules for lipid homeostasis. Med. Mol. Morphol. 38, 2–12 (2005).

    CAS  PubMed  Google Scholar 

  6. Herget, M. & Tampe, R. Intracellular peptide transporters in human – compartmentalization of the “peptidome”. Pflugers Arch. 453, 591–600 (2007).

    CAS  PubMed  Google Scholar 

  7. Deeley, R. G., Westlake, C. & Cole, S. P. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 86, 849–899 (2006).

    CAS  PubMed  Google Scholar 

  8. Wanders, R. J., Visser, W. F., van Roermund, C. W., Kemp, S. & Waterham, H. R. The peroxisomal ABC transporter family. Pflugers Arch. 453, 719–734 (2007).

    CAS  PubMed  Google Scholar 

  9. Chen, Z. Q. et al. The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J. Biol. Chem. 281, 7452–7457 (2006).

    CAS  PubMed  Google Scholar 

  10. Kerr, I. D. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem. Biophys. Res. Commun. 315, 166–173 (2004).

    CAS  PubMed  Google Scholar 

  11. Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C. & Gottesman, M. M. Targeting multidrug resistance in cancer. Nature Rev. Drug Discov. 5, 219–234 (2006).

    CAS  Google Scholar 

  12. Teodori, E., Dei, S., Martelli, C., Scapecchi, S. & Gualtieri, F. The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr. Drug Targets. 7, 893–909 (2006).

    CAS  PubMed  Google Scholar 

  13. Kaye, S. B. Reversal of drug resistance in ovarian cancer: where do we go from here? J. Clin. Oncol. 26, 2616–2618 (2008).

    PubMed  Google Scholar 

  14. Lhomme, C. et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J. Clin. Oncol. 26, 2674–2682 (2008).

    CAS  PubMed  Google Scholar 

  15. Greenberg, P. L. et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J. Clin. Oncol. 22, 1078–1086 (2004).

    CAS  PubMed  Google Scholar 

  16. Ruff, P. et al. A randomized, placebo-controlled, double-blind phase 2 study of docetaxel compared to docetaxel plus zosuquidar (LY335979) in women with metastatic or locally recurrent breast cancer who have received one prior chemotherapy regimen. Cancer Chemother. Pharmacol. 64, 763–768 (2009).

    CAS  PubMed  Google Scholar 

  17. Garraway, L. A. & Chabner, B. MDR1 inhibition: less resistance or less relevance? Eur. J. Cancer 38, 2337–2340 (2002).

    CAS  PubMed  Google Scholar 

  18. Relling, M. V. Are the major effects of P-glycoprotein modulators due to altered pharmacokinetics of anticancer drugs? Ther. Drug Monit. 18, 350–356 (1996).

    CAS  PubMed  Google Scholar 

  19. Schinkel, A. H. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994).

    CAS  PubMed  Google Scholar 

  20. Szakacs, G. et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6, 129–137 (2004).

    CAS  PubMed  Google Scholar 

  21. Randolph, G. J. et al. A physiologic function for p-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. Proc. Natl Acad. Sci. USA 95, 6924–6929 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Robbiani, D. F. et al. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768 (2000).

    CAS  PubMed  Google Scholar 

  23. van de Ven, R. et al. A role for multidrug resistance protein 4 (MRP4; ABCC4) in human dendritic cell migration. Blood 112, 2353–2359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van de Ven, R., Scheffer, G. L., Scheper, R. J. & de Gruijl, T. D. The ABC of dendritic cell development and function. Trends Immunol. 30, 421–429 (2009).

    CAS  PubMed  Google Scholar 

  25. Vander Borght, S. et al. Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int. 28, 1370–1380 (2008).

    CAS  PubMed  Google Scholar 

  26. Filipits, M. et al. MRP and MDR1 gene expression in primary breast carcinomas. Clin. Cancer Res. 2, 1231–1237 (1996).

    CAS  PubMed  Google Scholar 

  27. Zochbauer-Muller, S. et al. P-glycoprotein and MRP1 expression in axillary lymph node metastases of breast cancer patients. Anticancer Res. 21, 119–124 (2001).

    CAS  PubMed  Google Scholar 

  28. Oevermann, L. et al. Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int. J. Cancer 124, 2303–2311 (2009).

    CAS  PubMed  Google Scholar 

  29. Hanada, S. et al. Expression profile of early lung adenocarcinoma: identification of MRP3 as a molecular marker for early progression. J. Pathol. 216, 75–82 (2008).

    CAS  PubMed  Google Scholar 

  30. Konig, J. et al. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int. J. Cancer 115, 359–367 (2005).

    PubMed  Google Scholar 

  31. Weinstein, R. S. et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res. 51, 2720–2726 (1991).

    CAS  PubMed  Google Scholar 

  32. Ohtsuki, S. et al. Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor. Biol. Pharm. Bull. 30, 1144–1146 (2007).

    CAS  PubMed  Google Scholar 

  33. Oda, Y. et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int. J. Cancer 114, 854–862 (2005).

    CAS  PubMed  Google Scholar 

  34. Steinbach, D. et al. ABCA3 as a possible cause of drug resistance in childhood acute myeloid leukemia. Clin. Cancer Res. 12, 4357–4363 (2006).

    CAS  PubMed  Google Scholar 

  35. Yoh, K. et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin. Cancer Res. 10, 1691–1697 (2004).

    CAS  PubMed  Google Scholar 

  36. Maris, J. M., Hogarty, M. D., Bagatell, R. & Cohn, S. L. Neuroblastoma. Lancet 369, 2106–2120 (2007).

    CAS  PubMed  Google Scholar 

  37. Haber, M. et al. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J. Clin. Oncol. 24, 1546–1553 (2006).

    CAS  PubMed  Google Scholar 

  38. Norris, M. D. et al. Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Mol. Cancer Ther. 4, 547–553 (2005).

    CAS  PubMed  Google Scholar 

  39. Oberthuer, A. et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J. Clin. Oncol. 24, 5070–5078 (2006).

    CAS  PubMed  Google Scholar 

  40. Mochida, Y. et al. The role of P-glycoprotein in intestinal tumorigenesis: disruption of mdr1a suppresses polyp formation in ApcMin/+ mice. Carcinogenesis 24, 1219–1224 (2003).

    CAS  PubMed  Google Scholar 

  41. Yamada, T. et al. Suppression of intestinal polyposis in Mdr1-deficient ApcMin/+ mice. Cancer Res. 63, 895–901 (2003).

    CAS  PubMed  Google Scholar 

  42. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  43. Mantovani, A. Cancer: inflaming metastasis. Nature 457, 36–37 (2009).

    CAS  PubMed  Google Scholar 

  44. Lehne, G. & Rugstad, H. E. Cytotoxic effect of the cyclosporin PSC 833 in multidrug-resistant leukaemia cells with increased expression of P-glycoprotein. Br. J. Cancer 78, 593–600 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lehne, G., De Angelis, P., den Boer, M. & Rugstad, H. E. Growth inhibition, cytokinesis failure and apoptosis of multidrug-resistant leukemia cells after treatment with P-glycoprotein inhibitory agents. Leukemia 13, 768–778 (1999).

    CAS  PubMed  Google Scholar 

  46. Lehne, G. et al. The cyclosporin PSC 833 increases survival and delays engraftment of human multidrug-resistant leukemia cells in xenotransplanted NOD-SCID mice. Leukemia 16, 2388–2394 (2002).

    CAS  PubMed  Google Scholar 

  47. Lopes, E. C. et al. Multidrug resistance modulators PSC 833 and CsA show differential capacity to induce apoptosis in lymphoid leukemia cell lines independently of their MDR phenotype. Leuk. Res. 27, 413–423 (2003).

    CAS  PubMed  Google Scholar 

  48. Robinson, L. J. et al. Human MDR 1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry 36, 11169–11178 (1997).

    CAS  PubMed  Google Scholar 

  49. Smyth, M. J., Krasovskis, E., Sutton, V. R. & Johnstone, R. W. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl Acad. Sci. USA 95, 7024–7029 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnstone, R. W., Cretney, E. & Smyth, M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93, 1075–1085 (1999).

    CAS  PubMed  Google Scholar 

  51. Pallis, M. & Russell, N. P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood 95, 2897–2904 (2000).

    CAS  PubMed  Google Scholar 

  52. Bezombes, C. et al. Restoration of TNF-α-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC833. FASEB J. 12, 101–109 (1998).

    CAS  PubMed  Google Scholar 

  53. Tainton, K. M. et al. Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ. 11, 1028–1037 (2004).

    CAS  PubMed  Google Scholar 

  54. Aleman, C. et al. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res. 63, 3084–3091 (2003).

    CAS  PubMed  Google Scholar 

  55. Peaston, A. E. et al. MRP1 gene expression level regulates the death and differentiation response of neuroblastoma cells. Br. J. Cancer 85, 1564–1571 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuss, B. J. et al. In vitro and in vivo downregulation of MRP1 by antisense oligonucleotides: a potential role in neuroblastoma therapy. Int. J. Cancer 98, 128–133 (2002).

    CAS  PubMed  Google Scholar 

  57. Sassi, Y. et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J. Clin. Invest. 118, 2747–2757 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Katoh, S. Y., Ueno, M. & Takakura, N. Involvement of MDR1 function in proliferation of tumour cells. J. Biochem. 143, 517–524 (2008).

    CAS  PubMed  Google Scholar 

  59. Bhattacharya, S., Das, A., Mallya, K. & Ahmad, I. Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J. Cell Sci. 120, 2652–2662 (2007).

    CAS  PubMed  Google Scholar 

  60. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    CAS  Google Scholar 

  61. Zhou, S. et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl Acad. Sci. USA 99, 12339–12344 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Uchida, N., Leung, F. Y. & Eaves, C. J. Liver and marrow of adult mdr-1a/1b−/− mice show normal generation, function, and multi-tissue trafficking of primitive hematopoietic cells. Exp. Hematol. 30, 862–869 (2002).

    CAS  PubMed  Google Scholar 

  63. Jonker, J. W. et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl Acad. Sci. USA 99, 15649–15654 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, S., Zong, Y., Lu, T. & Sorrentino, B. P. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 35, 1248–1252 (2003).

    CAS  PubMed  Google Scholar 

  65. Wijnholds, J. et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Med. 3, 1275–1279 (1997).

    CAS  PubMed  Google Scholar 

  66. Raaijmakers, M. H. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia 21, 2094–2102 (2007).

    CAS  PubMed  Google Scholar 

  67. Bunting, K. D., Galipeau, J., Topham, D., Benaim, E. & Sorrentino, B. P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 92, 2269–2279 (1998).

    CAS  PubMed  Google Scholar 

  68. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001).

    CAS  PubMed  Google Scholar 

  69. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    CAS  PubMed  Google Scholar 

  70. Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Med. 12, 895–904 (2006).

    CAS  PubMed  Google Scholar 

  72. Miletti-Gonzalez, K. E. et al. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res. 65, 6660–6667 (2005).

    CAS  PubMed  Google Scholar 

  73. Colone, M. et al. The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J. Invest. Dermatol. 128, 957–971 (2008).

    CAS  PubMed  Google Scholar 

  74. Barakat, S. et al. Regulation of brain endothelial cells migration and angiogenesis by P-glycoprotein/caveolin-1 interaction. Biochem. Biophys. Res. Commun. 372, 440–446 (2008).

    CAS  PubMed  Google Scholar 

  75. Heimerl, S., Bosserhoff, A. K., Langmann, T., Ecker, J. & Schmitz, G. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Res. 17, 265–273 (2007).

    CAS  PubMed  Google Scholar 

  76. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  77. Dannenberg, A. J. & Subbaramaiah, K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4, 431–436 (2003).

    CAS  PubMed  Google Scholar 

  78. Gasparini, G., Longo, R., Sarmiento, R. & Morabito, A. Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol. 4, 605–615 (2003).

    CAS  PubMed  Google Scholar 

  79. Greenhough, A. et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30, 377–386 (2009).

    CAS  PubMed  Google Scholar 

  80. Muller, A. J. & Scherle, P. A. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nature Rev. Cancer 6, 613–625 (2006).

    CAS  Google Scholar 

  81. Fulton, A. M., Ma, X. & Kundu, N. Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Res. 66, 9794–9797 (2006).

    CAS  PubMed  Google Scholar 

  82. Chell, S., Kaidi, A., Williams, A. C. & Paraskeva, C. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim. Biophys. Acta 1766, 104–119 (2006).

    CAS  PubMed  Google Scholar 

  83. Tessner, T. G., Muhale, F., Riehl, T. E., Anant, S. & Stenson, W. F. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J. Clin. Invest. 114, 1676–1685 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  85. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science 310, 1504–1510 (2005).

    CAS  PubMed  Google Scholar 

  86. Tsujii, M. et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705–716 (1998).

    CAS  PubMed  Google Scholar 

  87. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    CAS  PubMed  Google Scholar 

  88. Sombroek, C. C. et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J. Immunol. 168, 4333–4343 (2002).

    CAS  PubMed  Google Scholar 

  89. Chan, B. S., Satriano, J. A., Pucci, M. & Schuster, V. L. Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter “PGT”. J. Biol. Chem. 273, 6689–6697 (1998).

    CAS  PubMed  Google Scholar 

  90. Nomura, T., Lu, R., Pucci, M. L. & Schuster, V. L. The two-step model of prostaglandin signal termination: in vitro reconstitution with the prostaglandin transporter and prostaglandin 15 dehydrogenase. Mol. Pharmacol. 65, 973–978 (2004).

    CAS  PubMed  Google Scholar 

  91. Schuster, V. L. Prostaglandin transport. Prostaglandins Other Lipid Mediat. 6869, 633–647 (2002).

    PubMed  Google Scholar 

  92. Tai, H. H., Ensor, C. M., Tong, M., Zhou, H. & Yan, F. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat. 6869, 483–493 (2002).

    PubMed  Google Scholar 

  93. de Waart, D. R., Paulusma, C. C., Kunne, C. & Oude Elferink, R. P. Multidrug resistance associated protein 2 mediates transport of prostaglandin E2. Liver Int. 26, 362–368 (2006).

    CAS  PubMed  Google Scholar 

  94. Reid, G. et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl Acad. Sci. USA 100, 9244–9249 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rius, M., Thon, W. F., Keppler, D. & Nies, A. T. Prostanoid transport by multidrug resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract. J. Urol. 174, 2409–2414 (2005).

    CAS  PubMed  Google Scholar 

  96. Lin, Z. P. et al. Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol. Pharmacol. 73, 243–251 (2008).

    CAS  PubMed  Google Scholar 

  97. Holla, V. R., Backlund, M. G., Yang, P., Newman, R. A. & DuBois, R. N. Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prev. Res. (Phila Pa) 1, 93–99 (2008).

    CAS  Google Scholar 

  98. Milne, G. L., Musiek, E. S. & Morrow, J. D. The cyclopentenone (A2/J2) isoprostanes—unique, highly reactive products of arachidonate peroxidation. Antioxid. Redox Signal. 7, 210–220 (2005).

    CAS  PubMed  Google Scholar 

  99. Musiek, E. S., Milne, G. L., McLaughlin, B. & Morrow, J. D. Cyclopentenone eicosanoids as mediators of neurodegeneration: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol. 15, 149–158 (2005).

    CAS  PubMed  Google Scholar 

  100. Negishi, M. & Katoh, H. Cyclopentenone prostaglandin receptors. Prostaglandins Other Lipid Mediat. 6869, 611–617 (2002).

    PubMed  Google Scholar 

  101. Straus, D. S. & Glass, C. K. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med. Res. Rev. 21, 185–210 (2001).

    CAS  PubMed  Google Scholar 

  102. Michalik, L., Desvergne, B. & Wahli, W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nature Rev. Cancer 4, 61–70 (2004).

    CAS  Google Scholar 

  103. Evers, R. et al. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Lett. 419, 112–116 (1997).

    CAS  PubMed  Google Scholar 

  104. Paumi, C. M., Wright, M., Townsend, A. J. & Morrow, C. S. Multidrug resistance protein (MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-Δ12,14prostaglandin J2 in MCF7 breast cancer cells. Biochemistry 42, 5429–5437 (2003).

    CAS  PubMed  Google Scholar 

  105. Mezhybovska, M., Wikstrom, K., Ohd, J. F. & Sjolander, A. The inflammatory mediator leukotriene D4 induces β-catenin signaling and its association with antiapoptotic Bcl-2 in intestinal epithelial cells. J. Biol. Chem. 281, 6776–6784 (2006).

    CAS  PubMed  Google Scholar 

  106. Nielsen, C. K. et al. A novel localization of the G-protein-coupled CysLT1 receptor in the nucleus of colorectal adenocarcinoma cells. Cancer Res. 65, 732–742 (2005).

    CAS  PubMed  Google Scholar 

  107. Ihara, A. et al. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J. Pharmacol. Sci. 103, 24–32 (2007).

    CAS  PubMed  Google Scholar 

  108. Peters-Golden, M. & Henderson, W. R. Jr. Leukotrienes. N. Engl. J. Med. 357, 1841–1854 (2007).

    CAS  PubMed  Google Scholar 

  109. Tazzyman, S., Lewis, C. E. & Murdoch, C. Neutrophils: key mediators of tumour angiogenesis. Int. J. Exp. Pathol. 90, 222–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Avis, I. M. et al. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J. Clin. Invest. 97, 806–813 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hong, S. H. et al. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res. 59, 2223–2228 (1999).

    CAS  PubMed  Google Scholar 

  112. Boado, R. J., Pardridge, W. M., Vinters, H. V. & Black, K. L. Differential expression of arachidonate 5-lipoxygenase transcripts in human brain tumors: evidence for the expression of a multitranscript family. Proc. Natl Acad. Sci. USA 89, 9044–9048 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hennig, R. et al. 5-Lipoxygenase and leukotriene B4 receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol. 161, 421–428 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tong, W. G., Ding, X. Z., Witt, R. C. & Adrian, T. E. Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Mol. Cancer Ther. 1, 929–935 (2002).

    CAS  PubMed  Google Scholar 

  115. Gunning, W. T., Kramer, P. M., Steele, V. E. & Pereira, M. A. Chemoprevention by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res. 62, 4199–4201 (2002).

    CAS  PubMed  Google Scholar 

  116. Chen, Y., Hu, Y., Zhang, H., Peng, C. & Li, S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genet. 41, 783–792 (2009).

    CAS  PubMed  Google Scholar 

  117. Belinsky, M. G., Chen, Z. S., Shchaveleva, I., Zeng, H. & Kruh, G. D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res. 62, 6172–6177 (2002).

    CAS  PubMed  Google Scholar 

  118. Chen, Z. S., Guo, Y., Belinsky, M. G., Kotova, E. & Kruh, G. D. Transport of bile acids, sulfated steroids, estradiol 17-β-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol. Pharmacol. 67, 545–557 (2005).

    CAS  PubMed  Google Scholar 

  119. Chen, Z. S. et al. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 63, 351–358 (2003).

    CAS  PubMed  Google Scholar 

  120. Cui, Y. et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 55, 929–937 (1999).

    CAS  PubMed  Google Scholar 

  121. Jedlitschky, G., Leier, I., Buchholz, U., Center, M. & Keppler, D. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res. 54, 4833–4836 (1994).

    CAS  PubMed  Google Scholar 

  122. Leier, I. et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 269, 27807–27810 (1994).

    CAS  PubMed  Google Scholar 

  123. Rius, M., Hummel-Eisenbeiss, J. & Keppler, D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J. Pharmacol. Exp. Ther. 324, 86–94 (2008).

    CAS  PubMed  Google Scholar 

  124. Zeng, H., Liu, G., Rea, P. A. & Kruh, G. D. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. 60, 4779–4784 (2000).

    CAS  PubMed  Google Scholar 

  125. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature Rev. Mol. Cell Biol. 9, 139–150 (2008).

    CAS  Google Scholar 

  126. Ishii, I., Fukushima, N., Ye, X. & Chun, J. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 73, 321–354 (2004).

    CAS  PubMed  Google Scholar 

  127. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nature Rev. Mol. Cell Biol. 4, 397–407 (2003).

    CAS  Google Scholar 

  128. Kluk, M. J. & Hla, T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim. Biophys. Acta 1582, 72–80 (2002).

    CAS  PubMed  Google Scholar 

  129. Taha, T. A., Argraves, K. M. & Obeid, L. M. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim. Biophys. Acta 1682, 48–55 (2004).

    CAS  PubMed  Google Scholar 

  130. Lee, M. J. et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99, 301–312 (1999).

    CAS  PubMed  Google Scholar 

  131. Kimura, T. et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem. J. 348, 71–76 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9, 225–238 (2006).

    CAS  PubMed  Google Scholar 

  135. Maceyka, M., Payne, S. G., Milstien, S. & Spiegel, S. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta 1585, 193–201 (2002).

    CAS  PubMed  Google Scholar 

  136. Radeff-Huang, J., Seasholtz, T. M., Matteo, R. G. & Brown, J. H. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J. Cell Biochem. 92, 949–966 (2004).

    CAS  PubMed  Google Scholar 

  137. Van Brocklyn, J. R., Young, N. & Roof, R. Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett. 199, 53–60 (2003).

    CAS  PubMed  Google Scholar 

  138. Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527–1530 (2000).

    CAS  PubMed  Google Scholar 

  139. Pettus, B. J. et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J. 17, 1411–1421 (2003).

    CAS  PubMed  Google Scholar 

  140. Sato, K. et al. Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J. Neurochem. 103, 2610–2619 (2007).

    CAS  PubMed  Google Scholar 

  141. Mitra, P. et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl Acad. Sci. USA 103, 16394–16399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Norris, M. D. et al. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N. Engl. J. Med. 334, 231–238 (1996).

    CAS  Google Scholar 

  143. Meitar, D., Crawford, S. E., Rademaker, A. W. & Cohn, S. L. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J. Clin. Oncol. 14, 405–414 (1996).

    CAS  PubMed  Google Scholar 

  144. Weiss, W., Aldape, K., Mohapatra, G., Feuerstein, B. & Bishop, J. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wenk, M. R. The emerging field of lipidomics. Nature Rev. Drug Discov. 4, 594–610 (2005).

    CAS  Google Scholar 

  146. Norman, B. H. et al. Cyclohexyl-linked tricyclic isoxazoles are potent and selective modulators of the multidrug resistance protein (MRP1). Bioorg Med. Chem. Lett. 15, 5526–5530 (2005).

    CAS  PubMed  Google Scholar 

  147. O'Connor, R. et al. A phase I clinical and pharmacokinetic study of the multi-drug resistance protein-1 (MRP-1) inhibitor sulindac, in combination with epirubicin in patients with advanced cancer. Cancer Chemother. Pharmacol. 59, 79–87 (2007).

    CAS  PubMed  Google Scholar 

  148. Kondratov, R. V., Komarov, P. G., Becker, Y., Ewenson, A. & Gudkov, A. V. Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein. Proc. Natl Acad. Sci. USA 98, 14078–14083 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. de Grouw, E. P. et al. Preferential expression of a high number of ATP binding cassette transporters in both normal and leukemic CD34+CD38- cells. Leukemia 20, 750–754 (2006).

    CAS  PubMed  Google Scholar 

  150. Park, S. et al. Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat 99, 9–17 (2006).

    CAS  PubMed  Google Scholar 

  151. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976).

    CAS  PubMed  Google Scholar 

  152. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485 (2003).

    CAS  PubMed  Google Scholar 

  153. Cole, S. P. et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    CAS  PubMed  Google Scholar 

  154. Munoz, M., Henderson, M., Haber, M. & Norris, M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life 59, 752–757 (2007).

    CAS  PubMed  Google Scholar 

  155. Bunting, K. D. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20, 11–20 (2002).

    CAS  PubMed  Google Scholar 

  156. Doyle, L. A. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA 95, 15665–15670 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Robey, R. W., Polgar, O., Deeken, J., To, K. W. & Bates, S. E. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 26, 39–57 (2007).

    CAS  PubMed  Google Scholar 

  158. Dorsam, R. T. & Gutkind, J. S. G-protein-coupled receptors and cancer. Nature Rev. Cancer 7, 79–94 (2007).

    CAS  Google Scholar 

  159. Chen, Z. S., Lee, K. & Kruh, G. D. Transport of cyclic nucleotides and estradiol 17-β-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. 276, 33747–33754 (2001).

    CAS  PubMed  Google Scholar 

  160. Wielinga, P. R. et al. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J. Biol. Chem. 278, 17664–17671 (2003).

    CAS  PubMed  Google Scholar 

  161. Jedlitschky, G., Burchell, B. & Keppler, D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem. 275, 30069–30074 (2000).

    CAS  PubMed  Google Scholar 

  162. Guo, Y. et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2', 3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl) adenine. J. Biol. Chem. 278, 29509–29514 (2003).

    CAS  PubMed  Google Scholar 

  163. de Wolf, C. J. et al. cGMP transport by vesicles from human and mouse erythrocytes. FEBS J. 274, 439–450 (2007).

    CAS  PubMed  Google Scholar 

  164. Borst, P. et al. The potential impact of drug transporters on nucleoside-analog-based antiviral chemotherapy. Antiviral Res. 62, 1–7 (2004).

    CAS  PubMed  Google Scholar 

  165. Raggers, R. J., Vogels, I. & van Meer, G. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem. J. 357, 859–865 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Heon Seo, K. et al. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-κB activation. Cancer Res. 66, 4681–4686 (2006).

    PubMed  Google Scholar 

  167. Bussolati, B. et al. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. Am. J. Pathol. 157, 1713–1725 (2000).

    CAS  Google Scholar 

  168. Melnikova, V. O., Mourad-Zeidan, A. A., Lev, D. C. & Bar-Eli, M. Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J. Biol. Chem. 281, 2911–2922 (2006).

    CAS  PubMed  Google Scholar 

  169. Denizot, Y. et al. Platelet-activating factor and liver metastasis of colorectal cancer. Int. J. Cancer 113, 503–505 (2005).

    CAS  PubMed  Google Scholar 

  170. Kim, J., Adam, R. M., Solomon, K. R. & Freeman, M. R. Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology 145, 613–619 (2004).

    CAS  PubMed  Google Scholar 

  171. Zhuang, L., Kim, J., Adam, R. M., Solomon, K. R. & Freeman, M. R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest. 115, 959–968 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Hughes-Fulford, M., Chen, Y. & Tjandrawinata, R. R. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells. Carcinogenesis 22, 701–707 (2001).

    CAS  PubMed  Google Scholar 

  173. Gillet, J. P., Efferth, T. & Remacle, J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim. Biophys. Acta 1775, 237–262 (2007).

    CAS  PubMed  Google Scholar 

  174. Oram, J. F., Wolfbauer, G., Vaughan, A. M., Tang, C. & Albers, J. J. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J. Biol. Chem. 278, 52379–52385 (2003).

    CAS  PubMed  Google Scholar 

  175. Ho, M. M., Ng, A. V., Lam, S. & Hung., J. Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827–4833 (2007).

    CAS  PubMed  Google Scholar 

  176. Ban, N. et al. ABCA3 as a lipid transporter in pulmonary surfactant biogenesis. J. Biol. Chem. 282, 9628–9634 (2007).

    CAS  PubMed  Google Scholar 

  177. Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Raaijmakers, M. H. et al. ABCB1 modulation does not circumvent drug extrusion from primitive leukemic progenitor cells and may preferentially target residual normal cells in acute myelogenous leukemia. Clin. Cancer Res. 12, 3452–3458 (2006).

    CAS  PubMed  Google Scholar 

  179. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Jin, F. et al. Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance-associated protein genes. Neuroscience 154, 541–550 (2008).

    CAS  PubMed  Google Scholar 

  181. Loebinger, M. R. et al. Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade. Br. J. Cancer 98, 380–387 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sager, G., Orbo, A., Pettersen, R. H. & Kjorstad, K. E. Export of guanosine 3', 5'-cyclic monophosphate (cGMP) from human erythrocytes characterized by inside-out membrane vesicles. Scand. J. Clin. Lab. Invest. 56, 289–293 (1996).

    CAS  PubMed  Google Scholar 

  183. Van Aubel, R. A., Smeets, P. H., van den Heuvel, J. J. & Russel, F. G. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal Physiol. 288, F327–333 (2005).

    CAS  PubMed  Google Scholar 

  184. Wang, J. et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3, 3769 (2008).

    Google Scholar 

  185. Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by grants from the National Health and Medical Research Council, Australia, Cancer Institute New South Wales, Australia, and Cancer Council New South Wales, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michelle Haber or Murray D. Norris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

valspodar

zosuquidar

FURTHER INFORMATION

Michelle Haber's homepage

Murray D. Norris's homepage

ABC transporters

Children's Cancer Institute Australia for Medical Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, J., Haber, M., Henderson, M. et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10, 147–156 (2010). https://doi.org/10.1038/nrc2789

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing