Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polycomb group proteins: navigators of lineage pathways led astray in cancer

Key Points

  • The Polycomb group (PcG) proteins regulate cell fate decisions during development and differentiation. They form multiprotein repressive complexes called Polycomb repressive complexes (PRCs), which modify chromatin.

  • The PcG proteins bind and repress the promoters of hundreds of genes encoding proteins with roles in cell fate determination.

  • It is unclear how PcG proteins are displaced and recruited to different subsets of target genes during cell fate decisions. However, cell fate transcription factors (CFTFs) and long non-coding RNAs (ncRNAs) are emerging as potential regulators.

  • There is growing evidence that many PcG target genes are silenced in advanced cancer and that this may be the result of an epigenetic switch to DNA methylation during neoplastic progression.

  • Several PcG proteins are known to be deregulated in cancer. We propose that the deregulation of CFTFs and long ncRNAs also leads to the misexpression of PcG target genes.

Abstract

The Polycomb group (PcG) proteins are transcriptional repressors that regulate lineage choices during development and differentiation. Recent studies have advanced our understanding of how the PcG proteins regulate cell fate decisions and how their deregulation potentially contributes to cancer. In this Review we discuss the emerging roles of long non-coding RNAs (ncRNAs) and a subset of transcription factors, which we call cell fate transcription factors, in the regulation of PcG association with target genes. We also speculate about how their deregulation contributes to tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coordinated action of Polycomb repressive complexes.
Figure 2: Dynamic recruitment and displacement of Polycomb group proteins during lineage specification.
Figure 3: Potential mechanisms by which cell fate transcription factors and long non-coding RNAs function to regulate Polycomb group protein association with target genes during lineage choices and specification.
Figure 4: Gain and loss of cell fate transcription factors may lead to the formation of tumour-initiating cells.

Similar content being viewed by others

References

  1. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Stingl, J. & Caldas, C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nature Rev. Cancer 7, 791–799 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vescovi, A. L., Galli, R. & Reynolds, B. A. Brain tumour stem cells. Nature Rev. Cancer 6, 425–436 (2006).

    Article  CAS  Google Scholar 

  4. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33 (2006). The authors discuss the epigenetic progenitor model of cancer, in which tumour development is proposed to involve the alteration of gene expression patterns owing to epigenetic changes. This model is under active investigation.

    Article  CAS  PubMed  Google Scholar 

  5. Ohm, J. E. & Baylin, S. B. Stem cell chromatin patterns: an instructive mechanism for DNA hypermethylation? Cell Cycle 6, 1040–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007). References 7–9 established that PcG target genes are frequently aberrantly hypermethylated by DNA methylation in cancer.

    Article  CAS  PubMed  Google Scholar 

  10. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  11. Pietersen, A. M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006). References 12–14 were the first studies to perform genome-wide mapping of target genes for the PcG proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The Polycomb Group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohn, F. & Schubeler, D. Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet. 25, 129–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Oktaba, K. et al. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell 15, 877–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Dietrich, N. et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J. 26, 1637–48 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gil, J., Bernard, D., Martinez, D. & Beach, D. Polycomb CBX7 has a unifying role in cellular lifespan. Nature Cell Biol. 6, 67–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Gil, J. & Peters, G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  26. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 19, 1438–1443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhawan, S., Tschen, S. I. & Bhushan, A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev. 23, 906–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Mohammad, H. P. et al. Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res. 69, 6322–6330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bea, S. et al. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res. 61, 2409–2412 (2001).

    CAS  PubMed  Google Scholar 

  36. Rubio-Moscardo, F. et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 105, 4445–4454 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. van Lohuizen, M. et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koontz, J. I. et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc. Natl Acad. Sci. USA 98, 6348–6353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bachmann, I. M. et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 24, 268–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–35 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saramaki, O. R., Tammela, T. L., Martikainen, P. M., Vessella, R. L. & Visakorpi, T. The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosom. Cancer 45, 639–645 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. van Kemenade, F. J. et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 97, 3896–3901 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Vekony, H. et al. High expression of Polycomb group protein EZH2 predicts poor survival in salivary gland adenoid cystic carcinoma. J. Clin. Pathol. 61, 744–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Weikert, S. et al. Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int. J. Mol. Med. 16, 349–353 (2005).

    CAS  PubMed  Google Scholar 

  48. Friedman, J. M. et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69, 2623–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raaphorst, F. M., Otte, A. P. & Meijer, C. J. Polycomb-group genes as regulators of mammalian lymphopoiesis. Trends Immunol. 22, 682–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Ringrose, L. & Paro, R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Kwong, C. et al. Stability and dynamics of polycomb target sites in Drosophila development. PLoS Genet. 4, e1000178 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. & Teichmann, S. A. Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Blyth, K., Cameron, E. R. & Neil, J. C. The RUNX genes: gain or loss of function in cancer. Nature Rev. Cancer 5, 376–387 (2005).

    Article  CAS  Google Scholar 

  56. Myatt, S. S. & Lam, E. W. The emerging roles of forkhead box (Fox) proteins in cancer. Nature Rev. Cancer 7, 847–859 (2007).

    Article  CAS  Google Scholar 

  57. Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nature Rev. Genet. 6, 893–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Robson, E. J., He, S. J. & Eccles, M. R. A PANorama of PAX genes in cancer and development. Nature Rev. Cancer 6, 52–62 (2006).

    Article  CAS  Google Scholar 

  59. Caretti, G., Di Padova, M., Micales, B., Lyons, G. E. & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627–2638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garcia, E., Marcos-Gutierrez, C., del Mar Lorente, M., Moreno, J. C. & Vidal, M. RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1. EMBO J. 18, 3404–3418 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barna, M. et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev. Cell 3, 499–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Boukarabila, H. et al. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev. 23, 1195–1206 (2009).

    CAS  Google Scholar 

  63. Hosokawa, H. et al. Regulation of Th2 cell development by Polycomb group gene bmi-1 through the stabilization of GATA3. J. Immunol. 177, 7656–7664 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Trimarchi, J. M., Fairchild, B., Wen, J. & Lees, J. A. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl Acad. Sci. USA 98, 1519–1524 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kleinmann, E., Geimer Le Lay, A. S., Sellars, M., Kastner, P. & Chan, S. Ikaros represses the transcriptional response to Notch signaling in T-cell development. Mol. Cell. Biol. 28, 7465–7475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, X., Hiller, M., Sancak, Y. & Fuller, M. T. Tissue-specific TAFs counteract Polycomb to turn on terminal differentiation. Science 310, 869–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007). This paper identified HOTAIR as a long ncRNA that is transcribed from the HOXC locus, which the authors showed associates with the PRC2 complex and is required for recruitment of PcGs to the HOXD locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15, 668–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dinger, M. E. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18, 1433–1445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hogg, J. R. & Collins, K. Structured non-coding RNAs and the RNP Renaissance. Curr. Opin. Chem. Biol. 12, 684–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krajewski, W. A., Nakamura, T., Mazo, A. & Canaani, E. A motif within SET-domain proteins binds single-stranded nucleic acids and transcribed and supercoiled DNAs and can interfere with assembly of nucleosomes. Mol. Cell. Biol. 25, 1891–1899 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein-RNA interaction modules. Nature 407, 405–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Bernstein, E. et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26, 2560–2569 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3, 975–981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004). A landmark paper, which established that three transcription factors do not primarily bind at the promoters of known coding genes, as previously assumed.

    Article  CAS  PubMed  Google Scholar 

  80. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009). This paper identified 1,600 conserved long ncRNAs in humans, and showed the differential expression of some of these during embryonic development and in response to DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lefterova, M. I. et al. PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22, 2941–2952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nielsen, R. et al. Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 22, 2953–2967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robertson, A. G. et al. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res. 18, 1906–1917 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Ramsay, R. G. & Gonda, T. J. MYB function in normal and cancer cells. Nature Rev. Cancer 8, 523–534 (2008).

    Article  CAS  Google Scholar 

  86. Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nature Rev. Cancer 6, 593–602 (2006).

    Article  CAS  Google Scholar 

  87. Zhang, S. J. et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 105, 2076–2081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kouros-Mehr, H., Kim, J. W., Bechis, S. K. & Werb, Z. GATA-3 and the regulation of the mammary luminal cell fate. Curr. Opin. Cell Biol. 20, 164–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 17, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Reid, A. et al. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 86, 4544–4552 (1995).

    CAS  PubMed  Google Scholar 

  95. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl Acad. Sci. USA 91, 12223–12227 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thorsteinsdottir, U. et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99, 121–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Lang, D. et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Olguin, H. C. & Olwin, B. B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275, 375–388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kotaja, N. & Sassone-Corsi, P. Plzf pushes stem cells. Nature Genet. 36, 551–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Villa, R. et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11, 513–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura, T. et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nature Genet. 12, 154–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Que, J. et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134, 2521–2531 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Que, J., Luo, X., Schwartz, R. J. & Hogan, B. L. Multiple roles for Sox2 in the developing and adult mouse trachea. Development 136, 1899–1907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, X. et al. Multilayered epithelium in a rat model and human Barrett's esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 8, 1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nature Rev. Immunol. 2, 162–174 (2002).

    Article  CAS  Google Scholar 

  107. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Xu, C. R., Schaffer, L., Head, S. R. & Feeney, A. J. Reciprocal patterns of methylation of H3K36 and H3K27 on proximal vs. distal IgVH genes are modulated by IL-7 and Pax5. Proc. Natl Acad. Sci. USA 105, 8685–8690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tlsty, T. D. Luminal cells GATA have it. Nature Cell Biol. 9, 135–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Gurdon, J. B. & Melton, D. A. Nuclear reprogramming in cells. Science 322, 1811–1815 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. Development 136, 509–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). This is a seminal paper that describes how the expression of just four CFTFs, OCT4, SOX2, KLF4 and MYC, could de-differentiate skin fibroblasts into embryonic stem cells. It inspired efforts to generate patient-specific tissues for regenerative medicine. From a cancer perspective, together with subsequent papers, it highlights the reprogramming power of CFTFs.

    Article  CAS  PubMed  Google Scholar 

  113. Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnol. 27, 353–360 (2009).

    Article  CAS  Google Scholar 

  114. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Boiani, M. & Scholer, H. R. Regulatory networks in embryo-derived pluripotent stem cells. Nature Rev. Mol. Cell Biol. 6, 872–884 (2005).

    Article  CAS  Google Scholar 

  117. Wu, H. et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438, 981–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008). This paper identified a long ncRNA that represses CDKN2B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lin, R., Maeda, S., Liu, C., Karin, M. & Edgington, T. S. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26, 851–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Zhou, Q. & Melton, D. A. Extreme makeover: converting one cell into another. Cell Stem Cell 3, 382–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L. & Graf, T. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25, 731–744 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Helgeson, B. E. et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68, 73–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Cardone, M. et al. The novel ETS factor TEL2 cooperates with Myc in B lymphomagenesis. Mol. Cell. Biol. 25, 2395–2405 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kwei, K. A. et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet. 4, e1000081 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kroon, E., Thorsteinsdottir, U., Mayotte, N., Nakamura, T. & Sauvageau, G. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J. 20, 350–361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grutz, G. G. et al. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J. 17, 4594–4605 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chervinsky, D. S. et al. Disordered T-cell development and T-cell malignancies in SCL LMO1 double-transgenic mice: parallels with E2A-deficient mice. Mol. Cell. Biol. 19, 5025–5035 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fisch, P. et al. T-cell acute lymphoblastic lymphoma induced in transgenic mice by the RBTN1 and RBTN2 LIM-domain genes. Oncogene 7, 2389–2397 (1992).

    CAS  PubMed  Google Scholar 

  133. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Loercher, A. E., Tank, E. M., Delston, R. B. & Harbour, J. W. MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J. Cell Biol. 168, 35–40 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lidonnici, M. R., Corradini, F., Waldron, T., Bender, T. P. & Calabretta, B. Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood 111, 4771–4779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

    Article  CAS  PubMed  Google Scholar 

  137. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boon, K., Eberhart, C. G. & Riggins, G. J. Genomic amplification of orthodenticle homologue 2 in medulloblastomas. Cancer Res. 65, 703–707 (2005).

    CAS  PubMed  Google Scholar 

  139. Di, C. et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 65, 919–924 (2005).

    CAS  PubMed  Google Scholar 

  140. Barr, F. G. et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet. 3, 113–117 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen, Z. et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 12, 1161–1167 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. He, L. Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nature Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, J., Kalkum, M., Yamamura, S., Chait, B. T. & Roeder, R. G. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305, 1286–1289 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Yan, M. et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nature Med. 12, 945–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Yang, G. et al. Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol. Cell. Biol. 25, 5869–5879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. O'Neil, J., Shank, J., Cusson, N., Murre, C. & Kelliher, M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Kwei, K. A. et al. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 27, 3635–3640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Weir, B. A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Aoki, K., Tamai, Y., Horiike, S., Oshima, M. & Taketo, M. M. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/δ716 Cdx2± compound mutant mice. Nature Genet. 35, 323–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Wicking, C. et al. CDX2, a human homologue of Drosophila caudal, is mutated in both alleles in a replication error positive colorectal cancer. Oncogene 17, 657–659 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Chawengsaksophak, K., James, R., Hammond, V. E., Kontgen, F. & Beck, F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84–87 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Bai, Y. Q., Miyake, S., Iwai, T. & Yuasa, Y. CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene. Oncogene 22, 7942–7949 (2003).

    Article  PubMed  CAS  Google Scholar 

  155. Pabst, T. et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nature Genet. 27, 263–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Kirstetter, P. et al. Modeling of C/EBPα mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 13, 299–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Zuo, T. et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J. Clin. Invest. 117, 3765–3773 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zuo, T. et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129, 1275–1286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Usary, J. et al. Mutation of GATA3 in human breast tumors. Oncogene 23, 7669–7678 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Pei, X. H. et al. CDK inhibitor p18INK4c is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell 15, 389–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405, 974–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Garkavtsev, I. et al. The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature 391, 295–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Maestro, R. et al. Chromosome 13q deletion mapping in head and neck squamous cell carcinomas: identification of two distinct regions of preferential loss. Cancer Res. 56, 1146–1150 (1996).

    CAS  PubMed  Google Scholar 

  165. Kichina, J. V. et al. Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene 25, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Kimmelman, A. C. et al. Suppression of glioblastoma tumorigenicity by the Kruppel-like transcription factor KLF6. Oncogene 23, 5077–5083 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Huang, X., Li, X. & Guo, B. KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J. Biol. Chem. 283, 29795–29801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mueller, B. U. et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 101, 2074 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Vangala, R. K. et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101, 270–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nature Genet. 38, 1269–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature Genet. 36, 624–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Li, Q. L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Ito, K. et al. RUNX3 attenuates β-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14, 226–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Izeradjene, K. et al. KrasG12D and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11, 229–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Haber, D. A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  178. Yang, L., Han, Y., Suarez Saiz, F. & Minden, M. D. A tumor suppressor and oncogene: the WT1 story. Leukemia 21, 868–876 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Englert, C., Maheswaran, S., Garvin, A. J., Kreidberg, J. & Haber, D. A. Induction of p21 by the Wilms' tumor suppressor gene WT1. Cancer Res. 57, 1429–1434 (1997).

    CAS  PubMed  Google Scholar 

  180. Bass, A. J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genet. 4 Oct 2009 (doi: 10.1038/ng.465).

Download references

Acknowledgements

We thank G. Brien for help with Table 1, E. Bernstein for critical reading of the manuscript and members of the Bracken and Helin laboratories for very helpful discussions. Work in the Bracken laboratory is supported by the Smurfit Institute of Genetics, the Adelaide & Meath Hospital, including the National Children's Hospital, and the Trinity College Dublin start-up fund for new lecturers. Work in the Helin laboratory is supported by the Danish National Research Foundation, the Danish Cancer Society, the Novo Nordisk Foundation, the Danish Medical Research Council, the Danish Natural Science Research Council, the Lundbeck Foundation, the Association for International Cancer Research and the Excellence Programme of the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Kristian Helin's homepage

Adrian P. Bracken's homepage

Glossary

Epigenetic

Relating to effects on patterns of gene expression that are heritable through cell division and caused by mechanisms other than changes to the underlying DNA sequence.

Polycomb group proteins

A group of proteins first described in D. melanogaster that are required for normal development. They work in multiprotein complexes, called Polycomb repressive complexes, that establish regions of chromatin in which gene expression is repressed.

Homeobox (Hox) genes

Genes encoding a group of transcription factors that specify the anterior–posterior axis and segment identity of metazoan organisms during early embryonic development.

CDKN2B and CDKN2A loci

A stretch of 45 kb of chromosome 9 (in humans), which is frequently the target of mutation, deletion and epigenetic silencing in cancer. They encode three tumour suppressor proteins: INK4A and INK4B, which function in the RB pathway, and ARF, which functions in the p53 pathway.

Tumour suppressor

The loss of function of a tumour suppressor (by mutation, deletion or epigenetic silencing) contributes to cancer progression.

EZH2

A PcG protein and a histone methyltransferase that, together with EED and SUZ12 in the PRC2 complex, catalyses the trimethylation of histone H3 at lysine K27 (H3K27me3).

DNA methyltransferase

An enzyme that catalyses the transfer of a methyl group to DNA.

BMI1

BMI1 was initially identified as a common site of viral integration in Moloney virus-induced B cell lymphomas. Subsequently, BMI1 was shown to be a member of the PcG family.

Oncogene

A gene that contributes to cancer progression as a consequence of overexpression or of dominantly acting mutations that alter the activity and/or specificity of the gene product.

MicroRNA

These single-stranded RNAs are 21 to 23 nucleotides in length and regulate gene expression by partial complementary base pairing to mRNAs and recruitment to the RNA-induced silencing complex to inhibit translation (and possibly increase degradation) of mRNA.

Polycomb repressive element

A DNA sequence of varying length, but often of several hundred base pairs, to which the PcG proteins can be recruited. PREs have been defined in D. melanogaster, but not in other organisms so far. They are composed of a collection of transcription factor binding sites, defined as an 'element'.

CFTF

Any transcription factor that functions to regulate cell fate decisions during differentiation and development.

Embryonic stem cell

A cell derived from the inner cell mass of an early-stage embryo known as a blastocyst in mice and an epiblast in humans. They are immortal, can be propagated in vitro and are pluripotent.

SET domain

A conserved domain that catalyses histone lysine methyltransferase activity and is found in a wide variety of chromatin-modifying proteins, for example EZH2, SU(VAR)H1, MLL1 and G9A.

Chromodomain

A conserved region of around 60 amino acids, found in many of chromatin-interacting proteins, for example HPC1, HP1 and CHD1–9. It is involved in binding to specific methylated lysine residues, as found in histone proteins.

Pluripotent cell

A type of stem cell that is capable of differentiating into all of the derivatives of the three germ layers: ectoderm, endoderm and mesoderm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracken, A., Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9, 773–784 (2009). https://doi.org/10.1038/nrc2736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing