Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p53 polymorphisms: cancer implications

Key Points

  • TP53, which encodes p53, is a tumour suppressor gene that is frequently mutated in sporadic cancers. The mutations are usually single base substitutions that disrupt function, and some confer new oncogenic (gain-of-function) properties. Over 200 single nucleotide polymorphisms (SNPs; germline variants) in TP53 have been identified; in contrast to tumour-associated mutations, most of these TP53 SNPs are unlikely to have biological effects. Owing to the importance of p53 in tumour suppression, the polymorphisms that alter p53 function might affect cancer risk, progression and/or response to treatment.

  • p53 lies at the hub of a vast signalling network. Polymorphisms in upstream activators, repressors or downstream effectors of p53 might individually modulate cancer risk or interact with polymorphisms or mutations in TP53.

  • Because the effects of a polymorphism can be subtle and can vary according to genetic background, there are rigorous methodological challenges associated with determining the effect of a polymorphism on cancer risk. Even for the most studied SNP in p53 at codon 72, R72P, the results have been inconsistent, particularly those from population studies that have investigated associations with cancer risk.

  • Population studies require large sample sizes (in the thousands). High-throughput sequencing and the development of genome-wide SNP maps are allowing larger and more comprehensive studies of polymorphisms to be carried out. To date, no study of a sufficient size has reported a significant association between SNPs at the TP53 locus and altered cancer risk.

  • Molecular studies examining the effects of p53 polymorphisms have been based principally on in vitro models with transfected cell lines. The biological effects of p53 pathway variants at the molecular level in primary cells or in vivo still need to be determined. The design of genetically engineered mice using knock-in and knockout technology to study human polymorphisms is currently underway.

Abstract

The normal functioning of p53 is a potent barrier to cancer. Tumour-associated mutations in TP53, typically single nucleotide substitutions in the coding sequence, are a hallmark of most human cancers and cause dramatic defects in p53 function. By contrast, only a small fraction, if any, of the >200 naturally occurring sequence variations (single nucleotide polymorphisms, SNPs) of TP53 in human populations are expected to cause measurable perturbation of p53 function. Polymorphisms in the TP53 locus that might have cancer-related phenotypical manifestations are the subject of this Review. Polymorphic variants of other genes in the p53 pathway, such as MDM2, which might have biological consequences either individually or in combination with p53 variants are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p53 pathway.
Figure 2: Sequences of p53 response elements.
Figure 3: p53 single nucleotide polymorphisms: locations in the p53 protein and DNA sequences.
Figure 4: Transcriptional activity and frequency of the p53 polymorphic variants discussed in the text.
Figure 5: Three-dimensional structure of p53 in its tetrameric form.

Similar content being viewed by others

References

  1. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000). This is still the best short introduction to the role of p53 in cancer biology.

    Article  CAS  PubMed  Google Scholar 

  2. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  3. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Erster, S., Mihara, M., Kim, R. H., Petrenko, O. & Moll, U. M. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol. Cell. Biol. 24, 6728–6741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dumont, P., Leu, J. I., Della Pietra, A. C. 3rd, George, D. L. & Murphy, M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature Genet. 33, 357–365 (2003). This study shows that cell lines expressing the p53-R72 variant undergo apoptosis more efficiently than cell lines expressing p53-P72.

    Article  CAS  PubMed  Google Scholar 

  8. Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D. & Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Prives, C. & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Malkin, D. p53 and the Li-Fraumeni syndrome. Cancer Genet. Cytogenet. 66, 83–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Olivier, M. et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 19 Sep 2008 (doi: 10.1038/cgt.2008.69).

  13. Di Agostino, S. et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Restle, A. et al. Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 36, 5362–5375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caulin, C. et al. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J. Clin. Invest. 117, 1893–1901 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biol. 9, 573–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kruse, J. P. & Gu, W. SnapShot: p53 posttranslational modifications. Cell 133, 930–930.e1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Appella, E. & Anderson, C. W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  20. Tang, Y., Zhao, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612–626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bond, G. L., Hu, W. & Levine, A. J. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets 5, 3–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, W. et al. A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res. 67, 2757–2765 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Marine, J. C. & Jochemsen, A. G. Mdmx and Mdm2: brothers in arms? Cell Cycle 3, 900–904 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Candeias, M. M. et al. p53 mRNA controls p53 activity by managing Mdm2 functions. Nature Cell Biol. 10, 1098–1105 (2008). The first report to show that synonymous base substitutions in TP53 affect p53 function by influencing MDM2-mediated control of the translation of TP53 mRNA.

    Article  CAS  PubMed  Google Scholar 

  25. Marine, J. C. et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13, 927–934 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nature Rev. Cancer 6, 909–923 (2006).

    Article  CAS  Google Scholar 

  27. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol. 9, 402–412 (2008). A comprehensive review of the transcriptional control of p53 target genes, including a collation of verified human p53-responsive genes and their p53 response elements.

    Article  CAS  Google Scholar 

  28. Xu, Y. Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10, 400–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Menendez, D., Inga, A. & Resnick, M. A. The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol. Cell. Biol. 26, 2297–2308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bourdon, J. C. p53 and its isoforms in cancer. Br. J. Cancer 97, 277–282 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Courtois, S., de Fromentel, C. C. & Hainaut, P. p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 23, 631–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y. & Prives, C. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26, 2220–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Stiewe, T. The p53 family in differentiation and tumorigenesis. Nature Rev. Cancer 7, 165–168 (2007).

    Article  CAS  Google Scholar 

  34. Godar, S. et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braithwaite, A. W., Del Sal, G. & Lu, X. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 13, 984–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. & George, D. L. Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nature Cell Biol. 6, 443–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Wolff, S., Erster, S., Palacios, G. & Moll, U. M. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res. 18, 733–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tomita, Y. et al. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 281, 8600–8606 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. The International HapMap Consortium. The international HapMap project. Nature 426, 789–796 (2003).

  40. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lazar, V. et al. Simple sequence repeat polymorphism within the p53 gene. Oncogene 8, 1703–1705 (1993).

    CAS  PubMed  Google Scholar 

  42. Wang-Gohrke, S. et al. Intron variants of the p53 gene are associated with increased risk for ovarian cancer but not in carriers of BRCA1 or BRCA2 germline mutations. Br. J. Cancer 81, 179–183 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costa, S. et al. Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer 8, 32 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Boldrini, L. et al. Effect of the p53 codon 72 and intron 3 polymorphisms on non-small cell lung cancer (NSCLC) prognosis. Cancer Invest. 26, 168–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Gemignani, F. et al. A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene 23, 1954–1956 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Strauss, B. S. Role in tumorigenesis of silent mutations in the TP53 gene. Mutat. Res. 457, 93–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Duursma, A. M., Kedde, M., Schrier, M., le Sage, C. & Agami, R. miR-148 targets human DNMT3b protein coding region. RNA 14, 872–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lal, A. et al. p16INK4a translation suppressed by miR-24. PLoS ONE 3, e1864 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Felley-Bosco, E., Weston, A., Cawley, H. M., Bennett, W. P. & Harris, C. C. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am. J. Hum. Genet. 53, 752–759 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Matlashewski, G. J. et al. Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell. Biol. 7, 961–963 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chao, C. et al. Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J. Biol. Chem. 278, 41028–41033 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Dumaz, N. & Meek, D. W. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 18, 7002–7010 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng, L., Hollstein, M. & Xu, Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5, 2812–2819 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kurihara, A. et al. Ser46 phosphorylation of p53 is not always sufficient to induce apoptosis: multiple mechanisms of regulation of p53-dependent apoptosis. Genes Cells 12, 853–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Li, X., Dumont, P., Della Pietra, A., Shetler, C. & Murphy, M. E. The codon 47 polymorphism in p53 is functionally significant. J. Biol. Chem. 280, 24245–24251 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003). A remarkable tour de force examining the transcriptional transactivation potential of a comprehensive set of p53 mutants that represent all of the possible amino acid substitutions caused by single nucleotide changes. This landmark study shows that there are correlations between the p53 mutations preferentially selected for during tumorigenesis and the functional defects caused by the mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kakudo, Y., Shibata, H., Otsuka, K., Kato, S. & Ishioka, C. Lack of correlation between p53-dependent transcriptional activity and the ability to induce apoptosis among 179 mutant p53s. Cancer Res. 65, 2108–2114 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Puente, X. S. et al. Comparative analysis of cancer genes in the human and chimpanzee genomes. BMC Genomics 7, 15 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Beckman, G. et al. Is p53 polymorphism maintained by natural selection? Hum. Hered. 44, 266–270 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Sjalander, A., Birgander, R., Saha, N., Beckman, L. & Beckman, G. p53 polymorphisms and haplotypes show distinct differences between major ethnic groups. Hum. Hered. 46, 41–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Cui, R. et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128, 853–864 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Hu, W., Feng, Z., Atwal, G. S. & Levine, A. J. p53: a new player in reproduction. Cell Cycle 7, 848–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Hu, W., Feng, Z., Teresky, A. K. & Levine, A. J. p53 regulates maternal reproduction through LIF. Nature 450, 721–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Sakamuro, D., Sabbatini, P., White, E. & Prendergast, G. C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887–898 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Walker, K. K. & Levine, A. J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Toledo, F. et al. Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression. Mol. Cell. Biol. 27, 1425–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Roth, J., Koch, P., Contente, A. & Dobbelstein, M. Tumor-derived mutations within the DNA-binding domain of p53 that phenotypically resemble the deletion of the proline-rich domain. Oncogene 19, 1834–1842 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Mantovani, F. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Struct. Mol. Biol. 14, 912–920 (2007).

    Article  CAS  Google Scholar 

  74. Bergamaschi, D. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nature Genet. 38, 1133–1141 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Pim, D. & Banks, L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int. J. Cancer 108, 196–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Salvioli, S. et al. p53 codon 72 alleles influence the response to anticancer drugs in cells from aged people by regulating the cell cycle inhibitor p21WAF1. Cell Cycle 4, 1264–1271 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Sansone, P. et al. The p53 codon 72 proline allele is endowed with enhanced cell-death inducing potential in cancer cells exposed to hypoxia. Br. J. Cancer 96, 1302–1308 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Siddique, M. & Sabapathy, K. Trp53-dependent DNA-repair is affected by the codon 72 polymorphism. Oncogene 25, 3489–3500 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Storey, A. et al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Sullivan, A. et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23, 3328–3337 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Pharoah, P. D., Dunning, A. M., Ponder, B. A. & Easton, D. F. Association studies for finding cancer-susceptibility genetic variants. Nature Rev. Cancer 4, 850–860 (2004). This paper describes the difficulties with early studies that associated genetic variants with cancer susceptibility and describes how these difficulties are being met with current study designs and high-throughput methodologies.

    Article  CAS  Google Scholar 

  82. The Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J. Natl Cancer Inst. 98, 1382–1396 (2006).

  83. Zhou, Y. et al. P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int. J. Cancer 121, 1481–1486 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Matakidou, A., Eisen, T. & Houlston, R. S. TP53 polymorphisms and lung cancer risk: a systematic review and meta-analysis. Mutagenesis 18, 377–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. van Heemst, D. et al. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp. Gerontol. 40, 11–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Jee, S. H. et al. Polymorphism p53 codon-72 and invasive cervical cancer: a meta-analysis. Int. J. Gynaecol. Obstet. 85, 301–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Stacey, S. N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genet. 39, 865–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Tenesa, A. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genet. 40, 631–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Tomlinson, I. P. et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nature Genet. 40, 623–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Hung, R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brown, K. M. et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nature Genet. 40, 838–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genet. 40, 316–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nature Genet. 39, 631–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nature Genet. 40, 310–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Jones, J. S. et al. p53 polymorphism and age of onset of hereditary nonpolyposis colorectal cancer in a Caucasian population. Clin. Cancer Res. 10, 5845–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Shen, H., Zheng, Y., Sturgis, E. M., Spitz, M. R. & Wei, Q. P53 codon 72 polymorphism and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Lett. 183, 123–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Nelson, H. H., Wilkojmen, M., Marsit, C. J. & Kelsey, K. T. TP53 mutation, allelism and survival in non-small cell lung cancer. Carcinogenesis 26, 1770–1773 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Tommiska, J. et al. Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin. Cancer Res. 11, 5098–5103 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Xu, Y. et al. p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin. Cancer Res. 11, 7328–7333 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Matakidou, A. et al. Lack of evidence that p53 Arg72Pro influences lung cancer prognosis: an analysis of survival in 619 female patients. Lung Cancer 57, 207–212 (2007).

    Article  PubMed  Google Scholar 

  104. Marin, M. C. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nature Genet. 25, 47–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Zawlik, I. et al. Common polymorphisms in the MDM2 and TP53 genes and the relationship between TP53 mutations and patient outcomes in glioblastomas. Brain Pathol. 6 May 2008 (doi: 10.1111/j.1750-3639.2008.00170.x).

  106. Bougeard, G. et al. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li–Fraumeni syndrome. J. Med. Genet. 43, 531–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Vikhanskaya, F., Siddique, M. M., Kei Lee, M., Broggini, M. & Sabapathy, K. Evaluation of the combined effect of p53 codon 72 polymorphism and hotspot mutations in response to anticancer drugs. Clin. Cancer Res. 11, 4348–4356 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Fagerholm, R. et al. NAD(P)H:quinone oxidoreductase 1NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nature Genet. 40, 844–853 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A. & Bradley, A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc. Natl Acad. Sci. USA 95, 15608–15612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bond, G. L. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Atwal, G. S. et al. Haplotype structure and selection of the MDM2 oncogene in humans. Proc. Natl Acad. Sci. USA 104, 4524–4529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lum, S. S. et al. MDM2 SNP309 G allele increases risk but the T allele is associated with earlier onset age of sporadic breast cancers in the Chinese population. Carcinogenesis 29, 754–761 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Bond, G. L. et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 66, 5104–5110 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Atwal, G. S. et al. An information-theoretic analysis of genetics, gender and age in cancer patients. PLoS ONE 3, e1951 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ruijs, M. W. et al. The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li–Fraumeni syndrome and related phenotypes. Eur. J. Hum. Genet. 15, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Tabori, U., Nanda, S., Druker, H., Lees, J. & Malkin, D. Younger age of cancer initiation is associated with shorter telomere length in Li–Fraumeni syndrome. Cancer Res. 67, 1415–1418 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Boersma, B. J. et al. Association of breast cancer outcome with status of p53 and MDM2 SNP309. J. Natl Cancer Inst. 98, 911–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Gonzalez-Hormazabal, P. et al. Association of common ATM variants with familial breast cancer in a South American population. BMC Cancer 8, 117 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. McKinnon, P. J. ATM and ataxia telangiectasia. EMBO Rep. 5, 772–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Craig, A. L. et al. Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Biochem J. 342, 133–141 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, L., Gilkes, D. M., Pan, Y., Lane, W. S. & Chen, J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 24, 3411–3422 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973–14977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Spring, K. et al. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nature Genet. 32, 185–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Maillet, P., Vaudan, G., Chappuis, P. & Sappino, A. PCR-mediated detection of a polymorphism in the ATM gene. Mol. Cell. Probes 13, 67–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Jones, J. S. et al. ATM polymorphism and hereditary nonpolyposis colorectal cancer (HNPCC) age of onset (United States). Cancer Causes Control 16, 749–753 (2005).

    Article  PubMed  Google Scholar 

  130. Thorstenson, Y. R. et al. Global analysis of ATM polymorphism reveals significant functional constraint. Am. J. Hum. Genet. 69, 396–412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gartel, A. L. & Radhakrishnan, S. K. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 65, 3980–3985 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Waldman, T., Kinzler, K. W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995).

    CAS  PubMed  Google Scholar 

  133. Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P. & Serrano, M. Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res. 61, 6234–6238 (2001).

    CAS  PubMed  Google Scholar 

  134. Chedid, M., Michieli, P., Lengel, C., Huppi, K. & Givol, D. A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene 9, 3021–3024 (1994).

    CAS  PubMed  Google Scholar 

  135. Huang, S. P. et al. p53 codon 72 and p21 codon 31 polymorphisms in prostate cancer. Cancer Epidemiol. Biomarkers Prev. 13, 2217–2224 (2004).

    CAS  PubMed  Google Scholar 

  136. Popanda, O. et al. Elevated risk of squamous-cell carcinoma of the lung in heavy smokers carrying the variant alleles of the TP53 Arg72Pro and p21 Ser31Arg polymorphisms. Lung Cancer 55, 25–34 (2007).

    Article  PubMed  Google Scholar 

  137. Choi, Y. Y. et al. Comprehensive assessment of p21 polymorphisms and lung cancer risk. J. Hum. Genet. 53, 87–95 (2008).

    Article  PubMed  Google Scholar 

  138. Su, L. et al. No association between the p21 codon 31 serine-arginine polymorphism and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 12, 174–175 (2003).

    CAS  PubMed  Google Scholar 

  139. Tan, X. L. et al. Association between TP53 and p21 genetic polymorphisms and acute side effects of radiotherapy in breast cancer patients. Breast Cancer Res. Treat. 97, 255–262 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Sun, Y. et al. No point mutation but a codon 31 ser-->arg polymorphism of the WAF-1/CIP-1/p21 tumor suppressor gene in nasopharyngeal carcinoma (NPC): the polymorphism distinguishes Caucasians from Chinese. Cancer Epidemiol. Biomarkers Prev. 4, 261–267 (1995).

    CAS  PubMed  Google Scholar 

  141. Su, L. et al. P53 (codon 72) and P21 (codon 31) polymorphisms alter in vivo mRNA expression of p21. Lung Cancer 40, 259–266 (2003).

    Article  PubMed  Google Scholar 

  142. Staalesen, V. et al. The novel p21 polymorphism p21G251A is associated with locally advanced breast cancer. Clin. Cancer Res. 12, 6000–6004 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Resnick, M. A. & Inga, A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc. Natl Acad. Sci. USA 100, 9934–9939 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tomso, D. J. et al. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. Proc. Natl Acad. Sci. USA 102, 6431–6436 (2005). This paper describes the identification and analysis of SNPs in response elements of p53 target genes and their effect on p53 transactivation function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Contente, A., Dittmer, A., Koch, M. C., Roth, J. & Dobbelstein, M. A polymorphic microsatellite that mediates induction of PIG3 by p53. Nature Genet. 30, 315–320 (2002).

    Article  PubMed  Google Scholar 

  146. Gorgoulis, V. G. et al. Absence of association with cancer risk and low frequency of alterations at a p53 responsive PIG3 gene polymorphism in breast and lung carcinomas. Mutat. Res. 556, 143–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Ito, M. et al. Association of the PIG3 promoter polymorphism with invasive bladder cancer in a Japanese population. Jpn. J. Clin. Oncol. 36, 116–120 (2006).

    Article  PubMed  Google Scholar 

  148. Chen, K. et al. Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 28, 2008–2012 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Garcia-Closas, M. et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet. 4, e1000054 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Dudgeon, C. et al. Tumor susceptibility and apoptosis defect in a mouse strain expressing a human p53 transgene. Cancer Res. 66, 2928–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Luo, J. L. et al. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20, 320–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nature Rev. Cancer 7, 645–658 (2007). This excellent review explains recent technical advances in mouse genetic engineering and the promises they hold for cancer medicine.

    Article  CAS  Google Scholar 

  153. Bahassi el, M. et al. The breast cancer susceptibility allele CHEK2*1100delC promotes genomic instability in a knock-in mouse model. Mutat. Res. 616, 201–209 (2007).

    Article  PubMed  CAS  Google Scholar 

  154. Reinbold, M. et al. Common tumour p53 mutations in immortalized cells from Hupki mice heterozygous at codon 72. Oncogene 27, 2788–2794 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  155. Toledo, F., Liu, C. W., Lee, C. J. & Wahl, G. M. RMCE-ASAP: a gene targeting method for ES and somatic cells to accelerate phenotype analyses. Nucleic Acids Res. 34, e92 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Belteki, G., Gertsenstein, M., Ow, D. W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nature Biotechnol. 21, 321–324 (2003).

    Article  CAS  Google Scholar 

  157. Zhang, X. et al. Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum. Mutat. 27, 110–117 (2006).

    Article  PubMed  CAS  Google Scholar 

  158. Lind, H., Zienolddiny, S., Ekstrom, P. O., Skaug, V. & Haugen, A. Association of a functional polymorphism in the promoter of the MDM2 gene with risk of non-small cell lung cancer. Int. J. Cancer 119, 718–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Kuznetsov, S. G., Liu, P. & Sharan, S. K. Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2. Nature Med. 14, 875–881 (2007).

    Article  CAS  Google Scholar 

  160. Tidow, H. et al. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc. Natl Acad. Sci. USA 104, 12324–12329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Orsted, D. D., Bojesen, S. E., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J. Exp. Med. 204, 1295–1301 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Meletis, K. et al. p53 suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Medrano, S., Burns-Cusato, M., Atienza, M. B., Rahimi, D. & Scrable, H. Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol. Aging. 11 Sep 2007 (http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.016&eurl;doi:10.1016/j.neurobiolaging.2007.07.016).

  164. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med. 11, 1306–1313 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bensaad, K. & Vousden, K. H. p53: new roles in metabolism. Trends Cell Biol. 17, 286–291 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol. 7, 165–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Morrell, D., Cromartie, E. & Swift, M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl Cancer Inst. 77, 89–92 (1986).

    CAS  PubMed  Google Scholar 

  172. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Harris, S. L. et al. Detection of functional single-nucleotide polymorphisms that affect apoptosis. Proc. Natl Acad. Sci. USA 102, 16297–16302 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gottlieb, T. M., Leal, J. F., Seger, R., Taya, Y. & Oren, M. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299–1303 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Jun, H. J. et al. Combined effects of p73 and MDM2 polymorphisms on the risk of lung cancer. Mol. Carcinog. 46, 100–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Murray-Zmijewski, F., Lane, D. P. & Bourdon, J. C. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962–972 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Asher, G. & Shaul, Y. p53 proteasomal degradation: poly-ubiquitination is not the whole story. Cell Cycle 4, 1015–1018 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Ross, D. & Siegel, D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 382, 115–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Jansson, M. et al. Arginine methylation regulates the p53 response. Nature Cell Biol. 10, 1431–1439 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Hollstein laboratory is funded by Yorkshire Cancer Research and Cancer Research UK. Discussions and comments from M. Murphy, L. Hardie, P. Stambrook and T. Hupp are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Hollstein.

Supplementary information

Related links

Related links

DATABASES

OMIM

ataxia–telangiectasia

Li–Fraumeni

FURTHER INFORMATION

M. Hollstein's homepage

Database of germline p53 mutations

IARC TP53 mutation database

International HapMap Project

NCBI SNP database

NIH genetic association database

p53 Knowledgebase

TP53 Web Site

Glossary

Polymorphism

A germline variation within a gene (often at a single nucleotide, known as single nucleotide polymorphisms, SNPs) that exists at a frequency of at least 1% in the general population.

Penetrance

A measure of the proportion of genetically similar individuals that show any phenotypical manifestation of a mutation that they have in common.

p53 response element

A short sequence of DNA in or near a gene that can bind p53, which then regulates the transcriptional activity of that gene.

p53 family

This family includes p53, p63 and p73, which have a significant degree of sequence homology particularly in the sequence-specific DNA-binding domain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whibley, C., Pharoah, P. & Hollstein, M. p53 polymorphisms: cancer implications. Nat Rev Cancer 9, 95–107 (2009). https://doi.org/10.1038/nrc2584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing