Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cytokines and their relationship to the symptoms and outcome of cancer

Abstract

Tumours contain immune cells and a network of pro- and anti-inflammatory cytokines, which collaborate in the development and progression of cancer. Cytokine profiles might prove to be prognostic. The systemic effects of pro-inflammatory cytokines are associated with fatigue, depression and cognitive impairment, and can affect quality of life before, during and after treatment. In people with advanced cancer, pro-inflammatory cytokines are additionally associated with anorexia and cachexia, pain, toxicity of treatment and resistance to treatment. However, physical activity might modify cytokine levels and decrease fatigue in patients with cancer, and might also improve their prognosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of major cytokines in the tumour microenvironment.
Figure 2: Pathways of communication between periphery and the central nervous system (CNS).
Figure 3: A conceptual model of cytokines in cancer.

Similar content being viewed by others

References

  1. Borish, L. C. & Steinke, J. W. 2. Cytokines and chemokines. J. Allergy Clin. Immunol. 111, S460–S475 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Steinke, J. W. & Borish, L. 3. Cytokines and chemokines. J. Allergy Clin. Immunol. 117, S441–S445 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Elenkov, I. J. Neurohormonal-cytokine interactions: Implications for inflammation, common human diseases and well-being. Neurochem. Int. 52, 40–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pavlov, V. A. & Tracey, K. J. The cholinergic anti-inflammatory pathway. Brain Behav. Immun. 19, 493–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denardo, D. G. & Coussens, L. M. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9, 212 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Prehn, R. T. The immune reaction as a stimulator of tumor growth. Science 176, 170–171 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  12. Mantovani, A. Cancer: inflammation by remote control. Nature 435, 752–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

  14. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    Article  CAS  Google Scholar 

  17. Finke, J., Ferrone, S., Frey, A., Mufson, A. & Ochoa, A. Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol. Today 20, 158–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Tan, T. T. & Coussens, L. M. Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ruka, W., Rutkowski, P., Kaminska, J., Rysinska, A. & Steffen, J. Alterations of routine blood tests in adult patients with soft tissue sarcomas: relationships to cytokine serum levels and prognostic significance. Ann. Oncol. 12, 1423–1432 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Rutkowski, P., Kaminska, J., Kowalska, M., Ruka, W. & Steffen, J. Cytokine and cytokine receptor serum levels in adult bone sarcoma patients: correlations with local tumor extent and prognosis. J. Surg. Oncol. 84, 151–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, X. P., Yang, D. C., Elliott, R. L. & Head, J. F. Reduction in serum IL-6 after vacination of breast cancer patients with tumour-associated antigens is related to estrogen receptor status. Cytokine 12, 458–465 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Benoy, I. H. et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin. Cancer Res. 10, 7157–7162 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ebrahimi, B., Tucker, S. L., Li, D., Abbruzzese, J. L. & Kurzrock, R. Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer 101, 2727–2736 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Liao, W. C. et al. Serum interleukin-6 level but not genotype predicts survival after resection in stages II and III gastric carcinoma. Clin. Cancer Res. 14, 428–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Ramsey, S., Lamb, G. W., Aitchison, M. & McMillan, D. C. The longitudinal relationship between circulating concentrations of C-reactive protein, interleukin-6 and interleukin-10 in patients undergoing resection for renal cancer. Br. J. Cancer 95, 1076–1080 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffmann, T. K. et al. Aberrant cytokine expression in serum of patients with adenoid cystic carcinoma and squamous cell carcinoma of the head and neck. Head Neck 29, 472–478 (2007).

    Article  PubMed  Google Scholar 

  27. Jebreel, A. et al. Investigation of interleukin 10, 12 and 18 levels in patients with head and neck cancer. J. Laryngol. Otol. 121, 246–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Tsimberidou, A. M. et al. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer 113, 1605–1613 (2008).

    Article  PubMed  Google Scholar 

  29. Vardy, J. L. et al. Cytokine levels in patients with colorectal cancer and breast cancer and their relationship to fatigue and cognitive function. J. Clin. Oncol. 25, 9070 (2007).

    Article  Google Scholar 

  30. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Dong, L. M. et al. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299, 2423–2436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Howell, W. M. & Rose-Zerilli, M. J. Cytokine gene polymorphisms, cancer susceptibility, and prognosis. J. Nutr. 137, 194S–199S (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Chouchane, L., Ahmed, S. B., Baccouche, S. & Remadi, S. Polymorphism in the tumor necrosis factor-α promotor region and in the heat shock protein 70 genes associated with malignant tumors. Cancer 80, 1489–1496 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, M. et al. Frequent genotype changes at −308 of the human tumor necrosis factor-α promoter region in human uterine endometrial cancer. Oncol. Rep. 7, 369–373 (2000).

    CAS  PubMed  Google Scholar 

  35. Shih, C. M. et al. Association of TNF-α polymorphism with susceptibility to and severity of non-small cell lung cancer. Lung Cancer 52, 15–20 (2006).

    Article  PubMed  Google Scholar 

  36. Jang, W. H. et al. The −238 tumor necrosis factor-α promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett. 166, 41–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rothman, N. et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol. 7, 27–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Machado, J. C. et al. Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology 121, 823–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Kamangar, F., Cheng, C., Abnet, C. C. & Rabkin, C. S. Interleukin-1B polymorphisms and gastric cancer risk — a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15, 1920–1928 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Balasubramanian, S. P. et al. Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review. BMC Cancer 6, 188 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature 447, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Mrak, R. E. & Griffin, W. S. Glia and their cytokines in progression of neurodegeneration. Neurobiol. Aging 26, 349–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Quan, N., Whiteside, M. & Herkenham, M. Time course and localization patterns of interleukin-1β messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83, 281–293 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Vitkovic, L. et al. Cytokine signals propagate through the brain. Mol. Psychiatry 5, 604–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Bluthe, R. M. et al. Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C. R. Acad. Sci. III 317, 499–503 (1994).

    CAS  PubMed  Google Scholar 

  47. Romeo, H. E., Tio, D. L., Rahman, S. U., Chiappelli, F. & Taylor, A. N. The glossopharyngeal nerve as a novel pathway in immune-to-brain communication: relevance to neuroimmune surveillance of the oral cavity. J. Neuroimmunol. 115, 91–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Banks, W. A. The blood–brain barrier in psychoneuroimmunology. Neurol. Clin. 24, 413–419 (2006).

    Article  PubMed  Google Scholar 

  49. Konsman, J. P., Vigues, S., Mackerlova, L., Bristow, A. & Blomqvist, A. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J. Comp. Neurol. 472, 113–129 (2004).

    Article  PubMed  Google Scholar 

  50. Schiltz, J. C. & Sawchenko, P. E. Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J. Neurosci. 22, 5606–5618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dantzer, R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 500, 399–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Trask, P. C., Esper, P., Riba, M. & Redman, B. Psychiatric side effects of interferon therapy: prevalence, proposed mechanisms, and future directions. J. Clin. Oncol. 18, 2316–2326 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Scheibel, R. S., Valentine, A. D., O'Brien, S. & Meyers, C. A. Cognitive dysfunction and depression during treatment with interferon-α and chemotherapy. J. Neuropsychiatry Clin. Neurosci. 16, 185–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Capuron, L., Ravaud, A. & Dantzer, R. Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-α treatments in cancer patients. Psychosom. Med. 63, 376–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Muller, K. & Meineke, V. Radiation-induced alterations in cytokine production by skin cells. Exp. Hematol. 35, 96–104 (2007).

    Article  PubMed  CAS  Google Scholar 

  56. Martin, M., Lefaix, J. & Delanian, S. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 47, 277–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Madani, I. et al. Predicting risk of radiation-induced lung injury. J. Thorac. Oncol. 2, 864–874 (2007).

    Article  PubMed  Google Scholar 

  58. Grainger, D. J. et al. Genetic control of the circulating concentration of transforming growth factor type β1. Hum. Mol. Genet. 8, 93–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Quarmby, S. et al. Association of transforming growth factor β-1 single nucleotide polymorphisms with radiation-induced damage to normal tissues in breast cancer patients. Int. J. Radiat. Biol. 79, 137–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Andreassen, C. N. et al. TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother. Oncol. 75, 18–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Giotopoulos, G. et al. The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br. J. Cancer 96, 1001–1007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. De Ruyck, K. et al. TGFβ1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors. Int. J. Radiat. Oncol. Biol. Phys. 65, 1240–1248 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

    Article  PubMed  Google Scholar 

  64. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nature Rev. Immunol. 8, 59–73 (2008).

    Article  CAS  Google Scholar 

  66. Bogdan, C. & Ding, A. Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor α and interleukin-1 in macrophages. J. Leukoc. Biol. 52, 119–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Ding, A. H., Porteu, F., Sanchez, E. & Nathan, C. F. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248, 370–372 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Byrd-Leifer, C. A., Block, E. F., Takeda, K., Akira, S. & Ding, A. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur. J. Immunol. 31, 2448–2457 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Collins, T. S., Lee, L. F. & Ting, J. P. Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-κB- and AP-1-dependent mechanism. Cancer Immunol. Immunother. 49, 78–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Tsavaris, N., Kosmas, C., Vadiaka, M., Kanelopoulos, P. & Boulamatsis, D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br. J. Cancer 87, 21–27 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pusztai, L. et al. Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. Cytokine 25, 94–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Wood, L. J. et al. The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol. Res. Nurs. 8, 157–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Plate, J. M., Plate, A. E., Shott, S., Bograd, S. & Harris, J. E. Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol. Immunother. 54, 915–925 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Ramesh, G. & Reeves, W. B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramesh, G. & Reeves, W. B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 285, F610–F618 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, B., Ramesh, G., Norbury, C. C. & Reeves, W. B. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int. 72, 37–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Sleijfer, S. Bleomycin-induced pneumonitis. Chest 120, 617–624 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Tabata, C. et al. Thalidomide prevents bleomycin-induced pulmonary fibrosis in mice. J. Immunol. 179, 708–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Sime, P. J. & O'Reilly, K. M. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin. Immunol. 99, 308–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Miyazaki, Y. et al. Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis. A mouse model of progressive pulmonary fibrosis. J. Clin. Invest. 96, 250–259 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burstein, H. J. Aromatase inhibitor-associated arthralgia syndrome. Breast 16, 223–234 (2007).

    Article  PubMed  Google Scholar 

  82. Marhhom, E. & Cohen, I. Fertility preservation options for women with malignancies. Obstet. Gynecol. Surv. 62, 58–72 (2007).

    Article  PubMed  Google Scholar 

  83. Nalbandian, G. & Kovats, S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol. Res. 31, 91–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Carlsten, H. Immune responses and bone loss: the estrogen connection. Immunol. Rev. 208, 194–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Weitzmann, M. N. & Pacifici, R. The role of T lymphocytes in bone metabolism. Immunol. Rev. 208, 154–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Lawrence, D. P., Kupelnick, B., Miller, K., Devine, D. & Lau, J. Evidence report on the occurrence, assessment, and treatment of fatigue in cancer patients. J. Natl Cancer Inst. Monogr., 40–50 (2004).

  87. Ahles, T. A. & Saykin, A. J. Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Rev. Cancer 7, 192–201 (2007).

    Article  CAS  Google Scholar 

  88. Hermelink, K. et al. Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer 109, 1905–1913 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Vardy, J. & Tannock, I. Cognitive function after chemotherapy in adults with solid tumours. Crit. Rev. Oncol. Hematol. 63, 183–202 (2007).

    Article  PubMed  Google Scholar 

  90. Ahles, T. A. et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J. Clin. Oncol. 20, 485–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Bower, J. E. et al. Fatigue in long-term breast carcinoma survivors: a longitudinal investigation. Cancer 106, 751–758 (2006).

    Article  PubMed  Google Scholar 

  92. van Dam, A. M., Brouns, M., Louisse, S. & Berkenbosch, F. Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness? Brain Res. 588, 291–296 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Gatti, S. & Bartfai, T. Induction of tumor necrosis factor-α mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6. Brain Res. 624, 291–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Laye, S., Parnet, P., Goujon, E. & Dantzer, R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res. Mol. Brain Res. 27, 157–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Quan, N., Stern, E. L., Whiteside, M. B. & Herkenham, M. Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J. Neuroimmunol. 93, 72–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Gibertini, M., Newton, C., Friedman, H. & Klein, T. W. Spatial learning impairment in mice infected with Legionella pneumophila or administered exogenous interleukin-1-β. Brain Behav. Immun. 9, 113–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Aubert, A., Vega, C., Dantzer, R. & Goodall, G. Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. Brain Behav. Immun. 9, 129–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Holden, J. M., Overmier, J. B., Cowan, E. T. & Matthews, L. Effects of lipopolysaccharide on consolidation of partial learning in the Y-maze. Integr. Physiol. Behav. Sci. 39, 334–340 (2004).

    Article  PubMed  Google Scholar 

  99. Gahtan, E. & Overmier, J. B. Performance more than working memory disrupted by acute systemic inflammation in rats in appetitive tasks. Physiol. Behav. 73, 201–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Sparkman, N. L. et al. Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J. Neurosci. 26, 10709–10716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heyen, J. R., Ye, S., Finck, B. N. & Johnson, R. W. Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-κB. Brain Res. Mol. Brain Res. 77, 138–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Krzyszton, C. P. et al. Exacerbated fatigue and motor deficits in interleukin-10 deficient mice after peripheral immune stimulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 23 Jul 2008 (doi:10.1152/ajpregu.90303.2008).

  103. Krabbe, K. S. et al. Low-dose endotoxemia and human neuropsychological functions. Brain Behav. Immun. 19, 453–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Krabbe, K. S., Pedersen, M. & Bruunsgaard, H. Inflammatory mediators in the elderly. Exp. Gerontol. 39, 687–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Goshen, I. et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32, 1106–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Zipp, F. & Aktas, O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Mohankumar, P. S., Thyagarajan, S. & Quadri, S. K. Interleukin-1 stimulates the release of dopamine and dihydroxyphenylacetic acid from the hypothalamus in vivo. Life Sci. 48, 925–930 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Shintani, F. et al. Interleukin-1 β augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J. Neurosci. 13, 3574–3581 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meyers, C. A., Albitar, M. & Estey, E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 104, 788–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Schubert, C., Hong, S., Natarajan, L., Mills, P. J. & Dimsdale, J. E. The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav. Immun. 21, 413–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Bower, J. E. Cancer-related fatigue: links with inflammation in cancer patients and survivors. Brain Behav. Immun. 21, 863–871 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Cole, S. W. & Irwin, M. R. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin. Cancer Res. 12, 2759–2766 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Bower, J. E. et al. Diurnal cortisol rhythm and fatigue in breast cancer survivors. Psychoneuroendocrinology 30, 92–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Bower, J. E., Ganz, P. A. & Aziz, N. Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom. Med. 67, 277–280 (2005).

    Article  PubMed  Google Scholar 

  115. Bower, J. E. et al. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids. Brain Behav. Immun. 21, 251–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Irwin, M. R. & Cole, S. W. Cytokine gene polymorphisms and fatigue in breast cancer survivors: Early findings. Brain Behav. Immun. 9 Jul 2008 (doi:10.1016/j.bbi.2008.05.009).

  117. Smyth, J. M. et al. Individual differences in the diurnal cycle of cortisol. Psychoneuroendocrinology 22, 89–105 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Stone, A. A. et al. Individual differences in the diurnal cycle of salivary free cortisol: a replication of flattened cycles for some individuals. Psychoneuroendocrinology 26, 295–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Groenvold, M. et al. Psychological distress and fatigue predicted recurrence and survival in primary breast cancer patients. Breast Cancer Res. Treat. 105, 209–219 (2007).

    Article  PubMed  Google Scholar 

  120. Coates, A. S. et al. Quality-of-life scores predict outcome in metastatic but not early breast cancer. International Breast Cancer Study Group. J. Clin. Oncol. 18, 3768–3774 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Goodwin, P. J. et al. Health-related quality of life and psychosocial status in breast cancer prognosis: analysis of multiple variables. J. Clin. Oncol. 22, 4184–4192 (2004).

    Article  PubMed  Google Scholar 

  122. Steel, J. L., Geller, D. A., Gamblin, T. C., Olek, M. C. & Carr, B. I. Depression, immunity, and survival in patients with hepatobiliary carcinoma. J. Clin. Oncol. 25, 2397–2405 (2007).

    Article  PubMed  Google Scholar 

  123. Onitilo, A. A., Nietert, P. J. & Egede, L. E. Effect of depression on all-cause mortality in adults with cancer and differential effects by cancer site. Gen. Hosp. Psychiatry 28, 396–402 (2006).

    Article  PubMed  Google Scholar 

  124. Spiegel, D. & Giese-Davis, J. Depression and cancer: mechanisms and disease progression. Biol. Psychiatry 54, 269–282 (2003).

    Article  PubMed  Google Scholar 

  125. Irwin, M. R. Depression and risk of cancer progression: an elusive link. J. Clin. Oncol. 25, 2343–2344 (2007).

    Article  PubMed  Google Scholar 

  126. Andersen, B. L. et al. Stress and immune responses after surgical treatment for regional breast cancer. J. Natl Cancer Inst. 90, 30–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Lutgendorf, S. K. et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J. Clin. Oncol. 23, 7105–7113 (2005).

    Article  PubMed  Google Scholar 

  128. Sephton, S. E., Sapolsky, R. M., Kraemer, H. C. & Spiegel, D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl Cancer Inst. 92, 994–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Monk, J. P. et al. Assessment of tumor necrosis factor α blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J. Clin. Oncol. 24, 1852–1859 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Nishimoto, N. et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106, 2627–2632 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Yount, S. et al. Adalimumab plus methotrexate or standard therapy is more effective than methotrexate or standard therapies alone in the treatment of fatigue in patients with active, inadequately treated rheumatoid arthritis. Clin. Exp. Rheumatol. 25, 838–846 (2007).

    CAS  PubMed  Google Scholar 

  132. Capuron, L. et al. Anterior cingulate activation and error processing during interferon-α treatment. Biol. Psychiatry 58, 190–196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Silverman, D. H. et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res. Treat. 103, 303–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Mustian, K. M. et al. Integrative nonpharmacologic behavioral interventions for the management of cancer-related fatigue. Oncologist 12 (Suppl. 1), 52–67 (2007).

    Article  PubMed  Google Scholar 

  135. Nicklas, B. J., You, T. & Pahor, M. Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training. CMAJ 172, 1199–1209 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Goldhammer, E. et al. Exercise training modulates cytokines activity in coronary heart disease patients. Int. J. Cardiol. 100, 93–99 (2005).

    Article  PubMed  Google Scholar 

  137. Adamopoulos, S. et al. Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J. Am. Coll Cardiol. 39, 653–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Conraads, V. M. et al. Combined endurance/resistance training reduces plasma TNF-α receptor levels in patients with chronic heart failure and coronary artery disease. Eur. Heart J. 23, 1854–1860 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Polak, J. et al. Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor alpha in obese women. Metabolism 55, 1375–1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Oberbach, A. et al. Effect of a 4 week physical training program on plasma concentrations of inflammatory markers in patients with abnormal glucose tolerance. Eur. J. Endocrinol. 154, 577–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Flynn, M. G. & McFarlin, B. K. Toll-like receptor 4: link to the anti-inflammatory effects of exercise? Exerc. Sport Sci. Rev. 34, 176–181 (2006).

    Article  PubMed  Google Scholar 

  143. Cotman, C. W., Berchtold, N. C. & Christie, L. A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Zabora, J., BrintzenhofeSzoc, K., Curbow, B., Hooker, C. & Piantadosi, S. The prevalence of psychological distress by cancer site. Psychooncology 10, 19–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. & Maier, S. F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21, 47–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Deak, T. et al. Stress-induced increases in hypothalamic IL-1: a systematic analysis of multiple stressor paradigms. Brain Res. Bull. 64, 541–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. de Pablos, R. M. et al. Stress increases vulnerability to inflammation in the rat prefrontal cortex. J. Neurosci. 26, 5709–5719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Johnson, J. D. et al. Prior stressor exposure sensitizes LPS-induced cytokine production. Brain Behav. Immun. 16, 461–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nature Rev. Immunol. 5, 243–251 (2005).

    Article  CAS  Google Scholar 

  150. Kiecolt-Glaser, J. K. et al. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc. Natl Acad. Sci. USA 100, 9090–9095 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Graham, J. E. et al. Hostility and pain are related to inflammation in older adults. Brain Behav. Immun. 20, 389–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Kiecolt-Glaser, J. K. et al. Hostile marital interactions, proinflammatory cytokine production, and wound healing. Arch. Gen. Psychiatry 62, 1377–1384 (2005).

    Article  PubMed  Google Scholar 

  153. Raison, C. L. & Miller, A. H. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry 160, 1554–1565 (2003).

    Article  PubMed  Google Scholar 

  154. Irwin, M. R. & Miller, A. H. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav. Immun. 21, 374–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Pace, T. W., Hu, F. & Miller, A. H. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav. Immun. 21, 9–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Kenis, G. & Maes, M. Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol. 5, 401–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Musselman, D. L. et al. Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am. J. Psychiatry 158, 1252–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Soygur, H. et al. Interleukin-6 levels and HPA axis activation in breast cancer patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1242–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Capuron, L. et al. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry 7, 468–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  Google Scholar 

  161. Morrow, G. R. et al. Differential effects of paroxetine on fatigue and depression: a randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program. J. Clin. Oncol. 21, 4635–4641 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Roscoe, J. A. et al. Effect of paroxetine hydrochloride (Paxil) on fatigue and depression in breast cancer patients receiving chemotherapy. Breast Cancer Res. Treat. 89, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Miller, A. H., Ancoli-Israel, S., Bower, J. E., Capuron, L. & Irwin, M. R. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J. Clin. Oncol. 26, 971–982 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Tisdale, M. J. Biology of cachexia. J. Natl Cancer Inst. 89, 1763–1773 (1997).

    Article  CAS  PubMed  Google Scholar 

  165. Ramos, E. J. et al. Cancer anorexia–cachexia syndrome: cytokines and neuropeptides. Curr. Opin. Clin. Nutr. Metab. Care 7, 427–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Argiles, J. M., Busquets, S. & Lopez-Soriano, F. J. The pivotal role of cytokines in muscle wasting during cancer. Int. J. Biochem. Cell Biol. 37, 2036–2046 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Laviano, A., Meguid, M. M. & Rossi-Fanelli, F. Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol. 4, 686–694 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Illman, J. et al. Are inflammatory cytokines the common link between cancer-associated cachexia and depression? J. Support. Oncol. 3, 37–50 (2005).

    CAS  PubMed  Google Scholar 

  169. Bossola, M. et al. Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1518–R1523 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Busquets, S. et al. Tumour necrosis factor-α uncouples respiration in isolated rat mitochondria. Cytokine 22, 1–4 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Bossola, M. et al. Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann. Surg. 237, 384–389 (2003).

    PubMed  PubMed Central  Google Scholar 

  172. Jatoi, A. et al. A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer 110, 1396–1403 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Jatoi, A. et al. Interleukin-1 genetic polymorphisms and their relationship to the cancer anorexia/weight loss syndrome in metastatic gastric and gastroesophageal junction adenocarcinoma. J. Support. Oncol. 5, 41–46 (2007).

    CAS  PubMed  Google Scholar 

  174. Zhang, D. et al. Association of IL-1β gene polymorphism with cachexia from locally advanced gastric cancer. BMC Cancer 7, 45 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Chang, V. T., Janjan, N., Jain, S. & Chau, C. Update in cancer pain syndromes. J. Palliat. Med. 9, 1414–1434 (2006).

    Article  PubMed  Google Scholar 

  176. Schafers, M. & Sommer, C. Anticytokine therapy in neuropathic pain management. Expert Rev. Neurother. 7, 1613–1627 (2007).

    Article  PubMed  CAS  Google Scholar 

  177. Ledeboer, A. et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav. Immun. 21, 686–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Milligan, E. D. et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol. Pain 1, 9 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Uceyler, N., Rogausch, J. P., Toyka, K. V. & Sommer, C. Differential expression of cytokines in painful and painless neuropathies. Neurology 69, 42–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Watkins, L. R. & Maier, S. F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol. 51, 29–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Watkins, L. R. et al. Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav. Immun. 21, 131–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Lu, C. H. et al. Preincisional intravenous pentoxifylline attenuating perioperative cytokine response, reducing morphine consumption, and improving recovery of bowel function in patients undergoing colorectal cancer surgery. Anesth. Analg. 99, 1465–1471 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Kivisto, K. T., Kroemer, H. K. & Eichelbaum, M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br. J. Clin. Pharmacol. 40, 523–530 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Islam, M. et al. Differential effect of IFNα-2b on the cytochrome P450 enzyme system: a potential basis of IFN toxicity and its modulation by other drugs. Clin. Cancer Res. 8, 2480–2487 (2002).

    CAS  PubMed  Google Scholar 

  185. Rivory, L. P., Slaviero, K. A. & Clarke, S. J. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br. J. Cancer 87, 277–280 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Slaviero, K. A., Clarke, S. J. & Rivory, L. P. Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol. 4, 224–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Charles, K. A. et al. Transcriptional repression of hepatic cytochrome P450 3A4 gene in the presence of cancer. Clin. Cancer Res. 12, 7492–7497 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Ravi, R. & Bedi, A. NF-κB in cancer — a friend turned foe. Drug Resist. Updat. 7, 53–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  189. Domingo-Domenech, J. et al. Interleukin 6, a nuclear factor-κB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-κB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin. Cancer Res. 12, 5578–5586 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. De Vita, F. et al. Serum levels of interleukin-6 as a prognostic factor in advanced non-small cell lung cancer. Oncol. Rep 5, 649–652 (1998).

    CAS  PubMed  Google Scholar 

  191. Zhang, G. J. & Adachi, I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res. 19, 1427–1432 (1999).

    CAS  PubMed  Google Scholar 

  192. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  193. Ye, Q. H. et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Med. 9, 416–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Med. 8, 816–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Imada, A., Shijubo, N., Kojima, H. & Abe, S. Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur. Respir. J. 15, 1087–1093 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Ribatti, D. et al. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur. J. Clin. Invest. 33, 420–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625–4629 (1996).

    CAS  PubMed  Google Scholar 

  198. Hanada, T. et al. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int. J. Urol. 7, 263–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  199. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Budhu, A. et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10, 99–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Seike, M. et al. Use of a cytokine gene expression signature in lung adenocarcinoma and the surrounding tissue as a prognostic classifier. J. Natl Cancer Inst. 99, 1257–1269 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Loberg, R. D., Bradley, D. A., Tomlins, S. A., Chinnaiyan, A. M. & Pienta, K. J. The lethal phenotype of cancer: the molecular basis of death due to malignancy. CA Cancer J. Clin. 57, 225–241 (2007).

    Article  PubMed  Google Scholar 

  203. Hunter, K. Host genetics influence tumour metastasis. Nature Rev. Cancer 6, 141–146 (2006).

    Article  CAS  Google Scholar 

  204. Clinchy, B. et al. Preoperative interleukin-6 production by mononuclear blood cells predicts survival after radical surgery for colorectal carcinoma. Cancer 109, 1742–1749 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Hong, D. S., Angelo, L. S. & Kurzrock, R. Interleukin-6 and its receptor in cancer: implications for Translational Therapeutics. Cancer 110, 1911–1928 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Salgado, R. et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer 103, 642–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  207. Negrier, S. et al. Interleukin-6, interleukin-10, and vascular endothelial growth factor in metastatic renal cell carcinoma: prognostic value of interleukin-6 — from the Groupe Francais d'Immunotherapie. J. Clin. Oncol. 22, 2371–2378 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Shariat, S. F. et al. External validation of a biomarker-based preoperative nomogram predicts biochemical recurrence after radical prostatectomy. J. Clin. Oncol. 26, 1526–1531 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Kozlowski, L., Zakrzewska, I., Tokajuk, P. & Wojtukiewicz, M. Z. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz. Akad. Med. Bialymst. 48, 82–84 (2003).

    CAS  PubMed  Google Scholar 

  210. Nishimura, R. et al. An analysis of serum interleukin-6 levels to predict benefits of medroxyprogesterone acetate in advanced or recurrent breast cancer. Oncology 59, 166–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Sparano, A., Lathers, D. M., Achille, N., Petruzzelli, G. J. & Young, M. R. Modulation of Th1 and Th2 cytokine profiles and their association with advanced head and neck squamous cell carcinoma. Otolaryngol. Head Neck Surg. 131, 573–576 (2004).

    Article  PubMed  Google Scholar 

  212. Nakashima, H. et al. Association between IL-4 genotype and IL-4 production in the Japanese population. Genes Immun. 3, 107–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  213. Vandenbroeck, K. & Goris, A. Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy? Trends Pharmacol. Sci. 24, 284–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  214. Kleinrath, T., Gassner, C., Lackner, P., Thurnher, M. & Ramoner, R. Interleukin-4 promoter polymorphisms: a genetic prognostic factor for survival in metastatic renal cell carcinoma. J. Clin. Oncol. 25, 845–851 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Vuoristo, M. S. The polymorphisms of interleukin-10 gene influence the prognosis of patients with advanced melanoma. Cancer Genet. Cytogenet. 176, 54–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Lee, J. J. et al. Interleukin-10 gene polymorphism influences the prognosis of T-cell non-Hodgkin lymphomas. Br. J. Haematol. 137, 329–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  217. Lech-Maranda, E. et al. Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood 103, 3529–3534 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Pierce, J. P. et al. Greater survival after breast cancer in physically active women with high vegetable–fruit intake regardless of obesity. J. Clin. Oncol. 25, 2345–2351 (2007).

    Article  PubMed  Google Scholar 

  219. Holmes, M. D., Chen, W. Y., Feskanich, D., Kroenke, C. H. & Colditz, G. A. Physical activity and survival after breast cancer diagnosis. JAMA 293, 2479–2486 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Irwin, M. L. et al. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J. Clin. Oncol. 26, 3958–3964 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Meyerhardt, J. A. et al. Physical activity and survival after colorectal cancer diagnosis. J. Clin. Oncol. 24, 3527–3534 (2006).

    Article  PubMed  Google Scholar 

  222. Zhang, S., Folsom, A. R., Sellers, T. A., Kushi, L. H. & Potter, J. D. Better breast cancer survival for postmenopausal women who are less overweight and eat less fat. The Iowa Women's Health Study. Cancer 76, 275–283 (1995).

    Article  CAS  PubMed  Google Scholar 

  223. Chlebowski, R. T. et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women's Intervention Nutrition Study. J. Natl Cancer Inst. 98, 1767–1776 (2006).

    Article  PubMed  Google Scholar 

  224. Reeves, G. K. et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335, 1134 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Smith, J. K., Dykes, R., Douglas, J. E., Krishnaswamy, G. & Berk, S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 281, 1722–1727 (1999).

    Article  CAS  PubMed  Google Scholar 

  226. Fairey, A. S. et al. Randomized controlled trial of exercise and blood immune function in postmenopausal breast cancer survivors. J. Appl. Physiol. 98, 1534–1540 (2005).

    Article  PubMed  Google Scholar 

  227. Lago, F., Dieguez, C., Gomez-Reino, J. & Gualillo, O. Adipokines as emerging mediators of immune response and inflammation. Nature Clin. Pract. Rheumatol. 3, 716–724 (2007).

    Article  CAS  Google Scholar 

  228. Bruun, J. M., Helge, J. W., Richelsen, B. & Stallknecht, B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am. J. Physiol. Endocrinol. Metab. 290, E961–E967 (2006).

    Article  CAS  PubMed  Google Scholar 

  229. Tosi, M. F. Innate immune responses to infection. J. Allergy Clin. Immunol. 116, 241–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  231. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Chen, R., Alvero, A. B., Silasi, D. A., Steffensen, K. D. & Mor, G. Cancers take their Toll — the function and regulation of Toll-like receptors in cancer cells. Oncogene 27, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  233. Jego, G., Bataille, R., Geffroy-Luseau, A., Descamps, G. & Pellat-Deceunynck, C. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 20, 1130–1137 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. He, W. et al. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol. Immunol. 44, 2850–2859 (2007).

    Article  CAS  PubMed  Google Scholar 

  235. Kelly, M. G. et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 66, 3859–3868 (2006).

    Article  CAS  PubMed  Google Scholar 

  236. Allavena, P., Sica, A., Solinas, G., Porta, C. & Mantovani, A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. (2007).

  237. Garcia, K. C., Teyton, L. & Wilson, I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  238. Gutcher, I. & Becher, B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest. 117, 1119–1127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  240. Coffman, R. L. Origins of the TH1–T H2 model: a personal perspective. Nature Immunol. 7, 539–541 (2006).

    Article  CAS  Google Scholar 

  241. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  242. Wang, H. Y. & Wang, R. F. Regulatory T cells and cancer. Curr. Opin. Immunol. 19, 217–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  243. Chen, Z. et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin. Cancer Res. 5, 1369–1379 (1999).

    CAS  PubMed  Google Scholar 

  244. Casasnovas, R. O. et al. Plasma cytokine and soluble receptor signature predicts outcome of patients with classical Hodgkin's lymphoma: a study from the Groupe d'Etude des Lymphomes de l'Adulte. J. Clin. Oncol. 25, 1732–1740 (2007).

    Article  CAS  PubMed  Google Scholar 

  245. Reyes-Gibby, C. C. et al. Cytokine genes and pain severity in lung cancer: exploring the influence of TNF-α-308 G/A IL6–174G/C and IL8–251T/A. Cancer Epidemiol. Biomarkers Prev. 16, 2745–2751 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian F. Tannock.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colorectal cancer

etanercept

Hodgkin lymphoma

kidney cancer

lung carcinoma

ovarian cancer

pancreatic cancer

prostate cancer

National Cancer Institute Drug Dictionary

bleomycin

cisplatin

docetaxel

etoposide

gemcitabine

methotrexate

paclitaxel

testicular tumours

FURTHER INFORMATION

I. F. Tannock's homepage

Cytokine gene polymorphism in human disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seruga, B., Zhang, H., Bernstein, L. et al. Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8, 887–899 (2008). https://doi.org/10.1038/nrc2507

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing