Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

VEGF-A splicing: the key to anti-angiogenic therapeutics?

Abstract

The physiology of microvessels limits the growth and development of tumours. Tumours gain nutrients and excrete waste through growth-associated microvessels. New anticancer therapies target this microvasculature by inhibiting vascular endothelial growth factor A (VEGF-A) splice isoforms that promote microvessel growth. However, certain VEGF-A splice isoforms in normal tissues inhibit growth of microvessels. Thus, it is the VEGF-A isoform balance, which is controlled by mRNA splicing, that orchestrates angiogenesis. Here, we highlight the functional differences between the pro-angiogenic and the anti-angiogenic VEGF-A isoform families and the potential to harness the synthetic capacity of cancer cells to produce factors that inhibit, rather than aid, cancer growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein and mRNA products of human vascular endothelial growth factor A (VEGF-A).
Figure 2: Vascular endothelial growth factor A (VEGF-A) C′ terminal splicing regulation.
Figure 3: Signalling pathways downstream of vascular endothelial growth factor (VEGF-A)xxx and VEGF-Axxxb.
Figure 4: The structure of vascular endothelial growth factor A (VEGF-A).
Figure 5: Vascular endothelial growth factor A (VEGF-A)165b and VEGF-A165 interaction with VEGF receptor 2 (VEGFR2).

Similar content being viewed by others

References

  1. Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  2. Motzer, R. J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  PubMed  Google Scholar 

  4. Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol. 29, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Comm. 161, 851–858 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    CAS  PubMed  Google Scholar 

  8. Venables, J. P. E. Alternative Splicing in Cancer (Transworld Research Network, Kerala, 2006).

    Google Scholar 

  9. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Bates, D. O. et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–4131 (2002).

    CAS  PubMed  Google Scholar 

  12. Perrin, R. M. et al. Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia 48, 2422–2427 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nowak, D. G., et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by known splicing and growth factors. J. Cell Sci. (in the press).

  14. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Olsson, A. -K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling-in control of vascular function. Nature Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  Google Scholar 

  16. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    CAS  Google Scholar 

  17. Bevan, H. S., Harper, S. J. & Bates, D. O. in Angiogenesis: Basic Science and Clinical Applications (eds Maragoudakis, M. E. & Papadimitriou, E.) 1–26 (Transworld Research Network, Kerala, 2007).

    Google Scholar 

  18. Bevan, H. S. et al. The alternatively spliced anti-angiogenic family of VEGF isoforms, VEGFxxxb, in human kidney development. Nephron Physiol. (in the press).

  19. Cui, T. G. et al. Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein. Am. J. Physiol. Renal Physiol. 286, F767–F773 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Varey, A. H. et al. VEGF165b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br. J. Cancer 98, 1366–1379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gopi, S. S., Zadeh, M. H., Harper, S. J., Bates, D. O. & Gillatt, G. A. Expression of anti-angiogenic isoform, VEGF165b in transitional cell carcinoma of bladder. BJU Int. 101, 29–30 (2008).

    Google Scholar 

  22. Cebe-Suarez, S. et al. Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J. (in the press).

  23. Ruch, C., Skiniotis, G., Steinmetz, M. O., Walz, T. & Ballmer-Hofer, K. Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nature Struct. Mol. Biol. 14, 249–250 (2007).

    Article  CAS  Google Scholar 

  24. Burgess, A. W. et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12, 541–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kawamura, H., Li, X., Harper, S. J., Bates, D. O. & Claesson-Welsh, L. VEGF-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of co-receptor binding and deficient regulation of kinase activity. Cancer Res. 68, 4683–4692 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Cebe Suarez, S. et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell. Mol. Life Sci. 63, 2067–2077 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Xia, P. et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf–MEK–MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lamoreaux, W. J., Fitzgerald, M., Reiner, A., Hasty, K. A. & Charles, S. T. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc. Res. 55, 29–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet. 34, 383–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Nishijima, K. et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol. 171, 53–67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sugimoto, H. et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J. Biol. Chem. 278, 12605–12608 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Foster, R. R. et al. Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes. Am. J. Physiol. Renal Physiol. 284, F1263–F1273 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Foster, R. R., Saleem, M. A., Mathieson, P. W., Bates, D. O. & Harper, S. J. Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes. Am. J. Physiol. Renal Physiol. 288, F48–F57 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Woolard, J. et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 64, 7822–7835 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Rennel, E. S. et al. The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br. J. Cancer 98, 1250–1257 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O. & Gardiner, T. A. VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularisation in mice. Mol. Vis. 12, 626–632 (2006).

    CAS  PubMed  Google Scholar 

  39. Rennel, E. S., et al. Recombinant human vascular endothelial growth factor (VEGF165b) protein is an effective anti-cancer agent in mice. Eur. J. Cancer 44, 1883–1894 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ku, D. D., Zaleski, J. K., Liu, S. & Brock, T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 265, H586–H592 (1993).

    Article  CAS  Google Scholar 

  41. Bates, D. O. & Curry, F. E. Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. Am. J. Physiol. Heart Circ. Physiol. 271, H2520–H2528 (1996).

    Article  CAS  Google Scholar 

  42. Ferrara, N., Houck, K. A., Jakeman, L. B., Winer, J. & Leung, D. W. The vascular endothelial growth factor family of polypeptides. J. Cell Biochem. 47, 211–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell, C. A. et al. Unique vascular phenotypes following over-expression of individual VEGF-A isoforms from the developing lens. Angiogenesis 9, 209–224 (2006).

    Article  PubMed  Google Scholar 

  44. Glass, C. A., Harper, S. J. & Bates, D. O. The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J. Physiol. 572, 243–257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiu, Y. et al. Mammary alveolar development during lactation is inhibited by the endogenous antiangiogenic growth factor isoform, VEGF165b. FASEB J. 22, 1104–1112 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Budge, J. R., Fryer, J. D. & Bates, D. O. Intraperitoneal administration of recombinant human VEGF165b inhibits dissemination of metatatic melanoma cells in vivo. Microcirculation 17, 18–19 (2008).

    Google Scholar 

  47. Pritchard-Jones, R. O. et al. Expression of VEGFxxxb, the inhibitory isoforms of VEGF, in malignant melanoma. Br. J. Cancer 97, 223–230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diaz, R. et al. p73 isoforms affect VEGF, VEGF165b and PEDF expression in human colorectal tumors: VEGF165b downregulation as a marker of poor prognosis. Int. J. Cancer 123, 1060–1067 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Magnussen, A. et al. VEGF165b is more potent at inhibiting endothelial cell migration than Pegabtanib and is cytoprotective for retinal pigmented epithelial cells. FASEB J. 22, 746.14 (2008).

  50. Baffert, F., L. T. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 290, H547–H559 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghigna, C. et al. in Alternative Splicing in Cancer (ed. Venables, J.P.) 197–208 (Transworld Research Network, Kerala, 2006).

    Google Scholar 

  53. Muro, A. F., Iaconcig, A. & Baralle, F. E. Regulation of the fibronectin EDA exon alternative splicing. Cooperative role of the exonic enhancer element and the 5′ splicing site. FEBS Lett. 437, 137–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Schaal, T. D. & Maniatis, T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol. Cell Biol. 19, 261–273 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Venables, J. P. Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Caceres, J. F. & Kornblihtt, A. R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Neufeld, G. et al. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev. 15, 153–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Amir-Ahmady, B., Boutz, P. L., Markovtsov, V., Phillips, M. L. & Black, D. L. Exon repression by polypyrimidine tract binding protein. RNA 11, 699–716 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coles, L. S. et al. A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. Eur. J. Biochem. 271, 648–660 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Bakkour, N. et al. Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. PLoS Pathog. 3, 1530–1539 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kou, B. et al. In vivo inhibition of tumor angiogenesis by a soluble VEGFR-2 fragment. Exp. Mol. Pathol. 76, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Jin, P. et al. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res. Ther. 10, R73 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gagnon, M. L. et al. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc. Natl Acad. Sci. USA 97, 2573–2578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saarela, J., Ylikarppa, R., Rehn, M., Purmonen, S. & Pihlajaniemi, T. Complete primary structure of two variant forms of human type XVIII collagen and tissue-specific differences in the expression of the corresponding transcripts. Matrix Biol. 16, 319–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Mundel, T. M. & Kalluri, R. Type IV collagen-derived angiogenesis inhibitors. Microvasc. Res. 74, 85–89 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bates, D. O. & Harper, S. J. Therapeutic potential of inhibitory VEGF splice variants. Fut. Oncol. 1, 467–473 (2005).

    Article  CAS  Google Scholar 

  68. Jin, W. & Cote, G.J. Enhancer-dependent splicing of FGFR1α-exon is repressed by RNA interference-mediated down-regulation of SRp55. Cancer Res. 64, 8901–8905 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med. 9, 677–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Whittle, C., Gillespie, K., Harrison, R., Mathieson, P. W. & Harper, S. J. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin. Sci. (Lond.) 97, 303–312 (1999).

    Article  CAS  Google Scholar 

  72. Hirose, Y., Tacke, R. & Manley, J. L. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 13, 1234–1239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koenigsberger, C., Chicca, J. J. 2nd, Amoureux, M. C., Edelman, G. M. & Jones, F. S. Differential regulation by multiple promoters of the gene encoding the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA 97, 2291–2296 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Starovasnik, M. A. et al. Solution structure of the VEGF-binding domain of Flt-1: comparison of its free and bound states. J. Mol. Biol. 293, 531–544 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Muller, Y. A., Christinger, H. W., Keyt, B. A. & de Vos, A. M. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 Å resolution: multiple copy flexibility and receptor binding. Structure 5, 1325–1338 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Fairbrother, W. J., Champe, M. A., Christinger, H. W., Keyt, B. A. & Starovasnik, M. A. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 6, 637–648 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Keck, R. G., Berleau, L., Harris, R. & Keyt, B. A. Disulfide structure of the heparin binding domain in vascular endothelial growth factor: characterization of posttranslational modifications in VEGF. Arch. Biochem. Biophys. 344, 103–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Claffey, K. P., Senger, D. R. & Spiegelman, B. M. Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 1246, 1–9 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Harper.

Ethics declarations

Competing interests

VEGFxxxb isoforms are protected by a patent owned by the University of Bristol. The work described has been supported by the Wellcome Trust, the British Heart Foundation and the University of Bristol. D.O.B. is employed by the University of Bristol, S.J.H. by North Bristol NHS Trust, which has a revenue-sharing agreement with the University of Bristol.

Related links

Related links

DATABASES

National Cancer Institute

bladder cancer

colorectal carcinoma

Ewing sarcoma

kidney cancer

melanoma

prostate cancer

National Cancer Institute Drug Dictionary

aflibercept

bevacizumab

sorafenib

sunitinib

FURTHER INFORMATION

S. J. Harper's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, S., Bates, D. VEGF-A splicing: the key to anti-angiogenic therapeutics?. Nat Rev Cancer 8, 880–887 (2008). https://doi.org/10.1038/nrc2505

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing