Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?

Abstract

The advent of microarray technology has enabled scientists to simultaneously investigate the expression of thousands of genes. Gene-expression profiling studies have provided a molecular classification of breast cancer into clinically relevant subtypes, new tools to predict disease recurrence and response to different treatments, and new insights into various oncogenic pathways and the process of metastatic progression. Here we describe the state of the art of gene-expression studies in breast cancer, and consider both their current limitations and future promises. We also discuss the potential of molecular signatures to have an impact on individual breast cancer patient management, and ultimately to accelerate the transition between empirical and tailored medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRANSBIG independent validation study.
Figure 2: Comprehensive clinical decision-making algorithm.

Similar content being viewed by others

References

  1. Feuer, E. J. et al. The lifetime risk of developing breast cancer. J. Natl Cancer Inst. 85, 892–897 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Colozza, M., de Azambuja, E., Cardoso, F., Bernard, C. & Piccart, M. J. Breast cancer: achievements in adjuvant systemic therapies in the pre-genomic era. Oncologist 11, 111–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Goldhirsch, A. et al. First select the target: better choice of adjuvant treatments for breast cancer patients. Ann. Oncol. 17, 1772–1776 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Goldhirsch, A. et al. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann. Oncol. 16, 1569–1583 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnol. 24, 1151–1161 (2006).

    Article  CAS  Google Scholar 

  6. Kothapalli, R., Yoder, S. J., Mane, S. & Loughran, T. P. Jr. Microarray results: how accurate are they? BMC Bioinformatics 3, 22 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tan, P. K. et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 31, 5676–5684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baum, M. et al. Validation of a novel, fully integrated and flexible microarray benchtop facility for gene expression profiling. Nucleic Acids Res. 31, e151 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Barczak, A. et al. Spotted long oligonucleotide arrays for human gene expression analysis. Genome Res. 13, 1775–1785 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hardiman, G. Microarrays technologies 2006: an overview. Pharmacogenomics 7, 1153–1158 (2006).

    Article  PubMed  Google Scholar 

  11. Layfield, L. J., Goldstein, N., Perkinson, K. R. & Proia, A. D. Interlaboratory variation in results from immunohistochemical assessment of estrogen receptor status. Breast J. 9, 257–259 (2003).

    Article  PubMed  Google Scholar 

  12. Rhodes, A., Jasani, B., Barnes, D. M., Bobrow, L. G. & Miller, K. D. Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J. Clin. Pathol. 53, 125–130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo, L. et al. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nature Biotechnol. 24, 1162–1169 (2006).

    Article  CAS  Google Scholar 

  14. Dupuy, A. & Simon, R. M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J. Natl Cancer Inst. 99, 147–157 (2007).

    Article  PubMed  Google Scholar 

  15. Ein-Dor, L., Kela, I., Getz, G., Givol, D. & Domany, E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. West, M., Ginsburg, G. S., Huang, A. T. & Nevins, J. R. Embracing the complexity of genomic data for personalized medicine. Genome Res. 16, 559–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naderi, A. et al. A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26, 1507–1516 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Sotiriou, C. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst. 98, 262–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, E. T. New technologies for high-throughput analysis. Pharmacogenomics 6, 469–471 (2005).

    Article  PubMed  Google Scholar 

  24. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Foekens, J. A. et al. Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J. Clin. Oncol. 24, 1665–1671 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98, 1183–1192 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Desmedt, C. et al. Strong time-dependency of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multi-centre independent validation series. Clin. Cancer Res. 13, 3207–3214 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology 1991; 19; 403–410. Histopathology 41, 151 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Roylance, R. et al. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res. 59, 1433–1436 (1999).

    CAS  PubMed  Google Scholar 

  32. Warnberg, F., Nordgren, H., Bergkvist, L. & Holmberg, L. Tumour markers in breast carcinoma correlate with grade rather than with invasiveness. Br. J. Cancer 85, 869–874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Loi, S. et al. Definition of clinically distinct molecular subtypes in estrogen receptor positive breast carcinomas through use of genomic grade. J. Clin. Oncol. 25, 1239–1246 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Dai, H. et al. A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res. 65, 4059–4066 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Ivshina, A. V. et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 66, 10292–10301 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Oh, D. S. et al. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J. Clin. Oncol. 24, 1656–1664 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Teschendorff, A. E. et al. A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol. 7, R101 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Desmedt, C. & Sotiriou, C. Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 5, 2198–2202 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Sotiriou, C. et al. Comprehensive analysis integrating both clinicopathological and gene expression data in more than 1500 samples: proliferation captured by gene expression grade index appears to be the strongest prognostic factor in breast cancer (BC). Proc. Am. Soc. Clin. Oncol. 24, abstr. 507 (2006).

    Article  Google Scholar 

  41. Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. USA 102, 13550–13555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Glinsky, G. V., Berezovska, O. & Glinskii, A. B. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest. 115, 1503–1521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smid, M. et al. Genes associated with breast cancer metastatic to bone. J. Clin. Oncol. 24, 2261–2267 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Jansen, M. P. et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J. Clin. Oncol. 23, 732–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ma, X. J. et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5, 607–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Jansen, M. P. et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J. Clin. Oncol. 25, 662–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Ma, X. J. et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J. Clin. Oncol. 24, 4611–4619 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ayers, M. et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J. Clin. Oncol. 22, 2284–2293 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Hess, K. R. et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J. Clin. Oncol. 24, 4236–4244 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Folgueira, M. A. et al. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin. Cancer Res. 11, 7434–7443 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Hannemann, J. et al. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 23, 3331–3342 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Chang, J. C. et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362, 362–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Chang, J. C. et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J. Clin. Oncol. 23, 1169–1177 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Iwao-Koizumi, K. et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J. Clin. Oncol. 23, 422–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Bertucci, F. et al. Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res. 64, 8558–8565 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Andre, F., Mazouni, C., Hortobagyi, G. N. & Pusztai, L. DNA arrays as predictors of efficacy of adjuvant/neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. Biochim. Biophys. Acta 1766, 197–204 (2006).

    CAS  PubMed  Google Scholar 

  61. Rouzier, R. et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc. Natl Acad. Sci. USA 102, 8315–8320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Potti, A. et al. Genomic signatures to guide the use of chemotherapeutics. Nature Med. 12, 1294–1300 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Klein, C. A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klein, C. A. Gene expression sigantures, cancer cell evolution and metastatic progression. Cell Cycle 3, 29–31 (2004).

    CAS  PubMed  Google Scholar 

  67. Klein, C. A. & Holzel, D. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5, 1788–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Hayes, D. F. et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J. Natl Cancer Inst. 88, 1456–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J. Natl Cancer Inst. 97, 1180–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Nevins, J. R. et al. Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum. Mol. Genet. 12 Spec. No 2, R153–R157 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Pittman, J. et al. Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc. Natl Acad. Sci. USA 101, 8431–8436 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Piccart, M. et al. Keeping faith with trial volunteers. Nature 446, 137–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Fodor, S. P. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Hardiman, G. Microarray platforms — comparisons and contrasts. Pharmacogenomics 5, 487–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rouzier, R. et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Doane, A. S. et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25, 3994–4008 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Farmer, P. et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24, 4660–4671 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Desmedt, C. et al. Impact of cyclins E, neutrophil elastase and proteinase 3 expression levels on clinical outcome in primary breast cancer patients. Int. J. Cancer 119, 2539–2545 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their constructive comments and suggestions, as well as C. Straehle for her technical assistance. All the research work at the Translational Research Unit was supported by the MEDIC foundation, Breast Cancer Research foundation (BCRF), Fonds de la Recherche Scientifique (FNRS), les Amis de l'Institut Jules Bordet, Veridex LLC (San Diego, USA) and the European Union FP6 programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine J. Piccart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

FURTHER INFORMATION

Authors' laboratory homepage

Adjuvant!Online

Microarray Quality Control

Glossary

Bottom-up supervised approaches

The 'bottom-up' approach first identifies gene-expression profiles linked with a specific biological phenotype, and subsequently correlates these findings to survival.

Top-down supervised approaches

The 'top-down' approach generates gene-expression patterns associated with clinical outcome without any a priori biological assumptions.

Gene classifier

A statistical procedure in which individual items (that is, patients) are placed into groups (that is, low and high risk) based on quantitative information on one or more genes.

Predictive factors

Factors that correlate with response to, or benefit from, a given treatment according to specific patient or tumour characteristics.

Prognostic factors

Factors that give information on the prognosis for different subgroups of patients, describing the natural course and outcome, unrelated to different therapeutic interventions.

Supervised analysis

The method is 'supervised' or taught on a set of training data for which the outputs are already known. The algorithm attempts to match its predicted outputs to the known outputs.

Unsupervised analysis

A statistical method for microarrays that does not need additional previously derived information about the data to be analysed. The outputs are simply a description of the relationships among the samples or genes. A widely used unsupervised approach is hierarchical clustering, whereby single expression profiles are successively joined to form nodes that form a single hierarchical tree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotiriou, C., Piccart, M. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?. Nat Rev Cancer 7, 545–553 (2007). https://doi.org/10.1038/nrc2173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing