Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The developing role of receptors and adaptors

Abstract

The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERBB trafficking.
Figure 2: Putative mechanisms for the movement of receptor tyrosine kinases (RTKs) into the nucleus.

Similar content being viewed by others

References

  1. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  2. Le Roy, C. & Wrana, J. L. Signaling and endocytosis: a team effort for cell migration. Dev. Cell 9, 167–168 (2005).

    Article  CAS  Google Scholar 

  3. Le Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Rev. Mol. Cell Biol. 6, 112–126 (2005).

    Article  CAS  Google Scholar 

  4. McMahon, H. T. & Mills, I. G. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr. Opin. Cell Biol. 16, 379–391 (2004).

    Article  CAS  Google Scholar 

  5. Mills, I. G. et al. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors. J. Cell Biol. 170, 191–200 (2005).

    Article  CAS  Google Scholar 

  6. Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–56 (2004).

    Article  CAS  Google Scholar 

  7. Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biol. 3, 802–808 (2001).

    Article  CAS  Google Scholar 

  8. Giri, D. K. et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol. Cell. Biol. 25, 11005–11018 (2005).

    Article  CAS  Google Scholar 

  9. Lo, H. W. et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7, 575–589 (2005).

    Article  CAS  Google Scholar 

  10. Williams, C. C. et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J. Cell Biol. 167, 469–478 (2004).

    Article  CAS  Google Scholar 

  11. Wanker, E. E. et al. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495 (1997).

    Article  CAS  Google Scholar 

  12. Rao, D. S. et al. Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell 3, 471–482 (2003).

    Article  CAS  Google Scholar 

  13. Rao, D. S. et al. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J. Clin. Invest. 110, 351–360 (2002).

    Article  CAS  Google Scholar 

  14. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nature Med. 10, 33–39 (2004).

    Article  Google Scholar 

  15. Raper, S. E., Burwen, S. J., Barker, M. E. & Jones, A. L. Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration. Gastroenterology 92, 1243–1250 (1987).

    Article  CAS  Google Scholar 

  16. Marti, U. et al. Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid 11, 137–145 (2001).

    Article  CAS  Google Scholar 

  17. Lipponen, P. & Eskelinen, M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br. J. Cancer 69, 1120–1125 (1994).

    Article  CAS  Google Scholar 

  18. Lo, H. W. et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 65, 338–348 (2005).

    CAS  PubMed  Google Scholar 

  19. Wells, A. et al. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247, 962–964 (1990).

    Article  CAS  Google Scholar 

  20. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  Google Scholar 

  21. Marti, U. & Hug, M. Acinar and cellular distribution and mRNA expression of the epidermal growth factor receptor are changed during liver regeneration. J. Hepatol. 23, 318–327 (1995).

    CAS  PubMed  Google Scholar 

  22. Ni, C. Y., Murphy, M. P., Golde, T. E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    Article  CAS  Google Scholar 

  23. Dittmann, K. et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J. Biol. Chem. 280, 31182–31189 (2005).

    Article  CAS  Google Scholar 

  24. Prudovsky, I. A., Savion, N., LaVallee, T. M. & Maciag, T. The nuclear trafficking of extracellular fibroblast growth factor (FGF)-1 correlates with the perinuclear association of the FGF receptor-1α isoforms but not the FGF receptor-1β isoforms. J. Biol. Chem. 271, 14198–14205 (1996).

    Article  CAS  Google Scholar 

  25. Mitsuuchi, Y. et al. Identification of a chromosome 3p14. 3–21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18, 4891–4898 (1999).

    Article  CAS  Google Scholar 

  26. Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).

    Article  CAS  Google Scholar 

  27. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    Article  CAS  Google Scholar 

  28. Saporita, A. J. et al. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J. Biol. Chem. 278, 41998–42005 (2003).

    Article  CAS  Google Scholar 

  29. Huppert, S. S. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405, 966–970 (2000).

    Article  CAS  Google Scholar 

  30. Wilhelmsen, K. & van der Geer, P. Phorbol 12-myristate 13-acetate-induced release of the colony-stimulating factor 1 receptor cytoplasmic domain into the cytosol involves two separate cleavage events. Mol. Cell. Biol. 24, 454–464 (2004).

    Article  CAS  Google Scholar 

  31. Maatta, J. A. et al. Proteolytic cleavage and phosphorylation of a tumor-associated ErbB4 isoform promote ligand-independent survival and cancer cell growth. Mol. Biol. Cell 17, 67–79 (2006).

    Article  CAS  Google Scholar 

  32. Junttila, T. T. et al. Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res. 65, 1384–1393 (2005).

    Article  CAS  Google Scholar 

  33. Normanno, N. et al. The ErbB receptors and their ligands in cancer: an overview. Curr. Drug Targets 6, 243–257 (2005).

    Article  CAS  Google Scholar 

  34. Vecchi, M., Baulida, J. & Carpenter, G. Selective cleavage of the heregulin receptor ErbB-4 by protein kinase C activation. J. Biol. Chem. 271, 18989–18995 (1996).

    Article  CAS  Google Scholar 

  35. Rio, C., Buxbaum, J. D., Peschon, J. J. & Corfas, G. Tumor necrosis factor-α-converting enzyme is required for cleavage of erbB4/HER4. J. Biol. Chem. 275, 10379–10387 (2000).

    Article  CAS  Google Scholar 

  36. Vidal, G. A., Naresh, A., Marrero, L. & Jones, F. E. Presenilin-dependent γ-secretase processing regulates multiple ERBB4/HER4 activities. J. Biol. Chem. 280, 19777–19783 (2005).

    Article  CAS  Google Scholar 

  37. Offterdinger, M., Schofer, C., Weipoltshammer, K. & Grunt, T. W. c-erbB-3: a nuclear protein in mammary epithelial cells. J. Cell Biol. 157, 929–939 (2002).

    Article  CAS  Google Scholar 

  38. Fukui, S. et al. Nuclear accumulation of basic fibroblast growth factor in human astrocytic tumors. Cancer 97, 3061–3067 (2003).

    Article  CAS  Google Scholar 

  39. Bryant, D. M., Wylie, F. G. & Stow, J. L. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol. Biol. Cell 16, 14–23 (2005).

    Article  CAS  Google Scholar 

  40. Myers, J. M., Martins, G. G., Ostrowski, J. & Stachowiak, M. K. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J. Cell. Biochem. 88, 1273–1291 (2003).

    Article  CAS  Google Scholar 

  41. Stachowiak, M. K., Maher, P. A., Joy, A., Mordechai, E. & Stachowiak, E. K. Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res. Mol. Brain Res. 38, 161–165 (1996).

    Article  CAS  Google Scholar 

  42. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002).

    Article  CAS  Google Scholar 

  43. Rodighiero, C., Tsai, B., Rapoport, T. A. & Lencer, W. I. Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep. 3, 1222–1227 (2002).

    Article  CAS  Google Scholar 

  44. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    Article  CAS  Google Scholar 

  45. Pelkmans, L. & Helenius, A. Endocytosis via caveolae. Traffic 3, 311–320 (2002).

    Article  CAS  Google Scholar 

  46. Mills, I. G., Urbe, S. & Clague, M. J. Relationships between EEA1 binding partners and their role in endosome fusion. J. Cell Sci. 114, 1959–1965 (2001).

    CAS  PubMed  Google Scholar 

  47. Irvine, R. F. Nuclear lipid signalling. Nature Rev. Mol. Cell Biol. 4, 349–360 (2003).

    Article  CAS  Google Scholar 

  48. Byrne, R. D. et al. Nuclear envelope assembly is promoted by phosphoinositide-specific phospholipase C with selective recruitment of phosphatidylinositol-enriched membranes. Biochem. J. 387, 393–400 (2005).

    Article  CAS  Google Scholar 

  49. Larijani, B., Barona, T. M. & Poccia, D. L. Role for phosphatidylinositol in nuclear envelope formation. Biochem. J. 356, 495–501 (2001).

    Article  CAS  Google Scholar 

  50. Barona, T. et al. Diacylglycerol induces fusion of nuclear envelope membrane precursor vesicles. J. Biol. Chem. 280, 41171–41177 (2005).

    Article  CAS  Google Scholar 

  51. Vecchi, M. et al. Nucleocytoplasmic shuttling of endocytic proteins. J. Cell Biol. 153, 1511–1517 (2001).

    Article  CAS  Google Scholar 

  52. Mroczkowski, B., Mosig, G. & Cohen, S. ATP-stimulated interaction between epidermal growth factor receptor and supercoiled DNA. Nature 309, 270–273 (1984).

    Article  CAS  Google Scholar 

  53. Basu, M., Biswas, R. & Das, M. 42,000-molecular weight EGF receptor has protein kinase activity. Nature 311, 477–480 (1984).

    Article  CAS  Google Scholar 

  54. Chen, H. H. et al. Increased expression of nitric oxide synthase and cyclooxygenase-2 is associated with poor survival in cervical cancer treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 1093–1100 (2005).

    Article  CAS  Google Scholar 

  55. Vakkala, M. et al. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin. Cancer Res. 6, 2408–2416 (2000).

    CAS  PubMed  Google Scholar 

  56. Clark, D. E. et al. ERBB4/HER4 potentiates STAT5A transcriptional activity by regulating novel STAT5A serine phosphorylation events. J. Biol. Chem. 280, 24175–24180 (2005).

    Article  CAS  Google Scholar 

  57. Dittmann, K., Mayer, C. & Rodemann, H. P. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother. Oncol. 76, 157–161 (2005).

    Article  CAS  Google Scholar 

  58. Baselga, J. The EGFR as a target for anticancer therapy — focus on cetuximab. Eur. J. Cancer 37, S16–S22 (2001).

    Article  CAS  Google Scholar 

  59. Arasada, R. R. & Carpenter, G. Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. J. Biol. Chem. 280, 30783–30787 (2005).

    Article  CAS  Google Scholar 

  60. Zhu, Y. et al. Coregulation of estrogen receptor by ERBB4/HER4 establishes a growth promoting autocrine signal in breast tumor cells. Cancer Res. (in the press).

  61. Hanada, N. et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol. Carcinog. 45, 10–17 (2006).

    Article  CAS  Google Scholar 

  62. Shelton, J. G. et al. The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: what's genetics got to do with it? Expert Opin. Ther. Targets 9, 1009–1030 (2005).

    Article  CAS  Google Scholar 

  63. Wang, S. C. et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6, 251–261 (2004).

    Article  CAS  Google Scholar 

  64. Howe, L. R. et al. HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res. 65, 10113–10119 (2005).

    Article  CAS  Google Scholar 

  65. Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15, 414–422 (2003).

    Article  CAS  Google Scholar 

  66. Saint-Pol, A. et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6, 525–538 (2004).

    Article  CAS  Google Scholar 

  67. Marti, U. & Wells, A. The nuclear accumulation of a variant epidermal growth factor receptor (EGFR) lacking the transmembrane domain requires coexpression of a full-length EGFR. Mol. Cell Biol. Res. Commun. 3, 8–14 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the advice and support of D. E. Neal, T. Ross and M.-C. Hung as well as Cancer Research UK and the NCRI/ProMPT prostate cancer research collaborative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Mills.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary table 1 and supplementary references (PDF 286 kb)

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colon cancer

prostate cancer

FURTHER INFORMATION

Ian G. Mills's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massie, C., Mills, I. The developing role of receptors and adaptors. Nat Rev Cancer 6, 403–409 (2006). https://doi.org/10.1038/nrc1882

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing