Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Locus-specific mutation databases: pitfalls and good practice based on the p53 experience

Abstract

Between 50,000 and 60,000 mutations have been described in various genes that are associated with a wide variety of diseases. Reporting, storing and analysing these data is an important challenge as such data provide invaluable information for both clinical medicine and basic science. Locus-specific databases have been developed to exploit this huge volume of data. The p53 mutation database is a paradigm, as it constitutes the largest collection of somatic mutations (22,000). However, there are several biases in this database that can lead to serious erroneous interpretations. We describe several rules for mutation database management that could benefit the entire scientific community.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency of p53 mutants in the Universal Mutation Database.
Figure 2: Activity of p53 mutants according to their frequency in the Universal Mutation Database.
Figure 3: p53 loss of function.

References

  1. Collins, F. S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 (1995).

    Article  CAS  Google Scholar 

  2. Cotton, R. G. Mutation detection 2001: novel technologies, developments and applications for analysis of the human genome. Hum. Mutat. 19, 313–314 (2002).

    Article  Google Scholar 

  3. Paalman, M. H., Cotton, R. G. & Kazazian, H. H. Jr . Variation, databases, and disease: new directions for human mutation. Hum. Mutat. 16, 97–98 (2000).

    Article  CAS  Google Scholar 

  4. Claustres, M., Horaitis, O., Vanevski, M. & Cotton, R. G. Time for a unified system of mutation description and reporting: a review of locus-specific mutation databases. Genome Res. 12, 680–688 (2002).

    Article  CAS  Google Scholar 

  5. Montesano, R., Hainaut, P. & Wild, C. P. Hepatocellular carcinoma: from gene to public health. J. Natl Cancer Inst. 89, 1844–1851 (1997).

    Article  CAS  Google Scholar 

  6. Mulligan, L. M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  Google Scholar 

  7. Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  Google Scholar 

  8. Xue, F. et al. Germline RET mutations in MEN 2A and FMTC and their detection by simple DNA diagnostic tests. Hum. Mol. Genet. 3, 635–638 (1994).

    Article  CAS  Google Scholar 

  9. Edery, P. et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature 367, 378–380 (1994).

    Article  CAS  Google Scholar 

  10. Romeo, G. et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 367, 377–378 (1994).

    Article  CAS  Google Scholar 

  11. Olschwang, S. et al. Restriction of ocular fundus lesions to a specific subgroup of APC mutations in adenomatous polyposis coli patients. Cell 75, 959–968 (1993).

    Article  CAS  Google Scholar 

  12. Spirio, L. et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell 75, 951–957 (1993).

    Article  CAS  Google Scholar 

  13. Gallou, C. et al. Mutations of the VHL gene in sporadic renal cell carcinoma: definition of a risk factor for VHL patients to develop an RCC. Hum. Mutat. 13, 464–475 (1999).

    Article  CAS  Google Scholar 

  14. Pearson, P. L. The genome data base (GDB) — human gene mapping repository. Nucleic Acids Res. 19 (Suppl.), 2237–2239 (1991).

    Article  CAS  Google Scholar 

  15. Bilofsky, H. S. et al. The GenBank genetic sequence databank. Nucleic Acids Res. 14, 1–4 (1986).

    Article  CAS  Google Scholar 

  16. Hamm, G. H. & Cameron, G. N. The EMBL data library. Nucleic Acids Res. 14, 5–9 (1986).

    Article  CAS  Google Scholar 

  17. Bairoch, A. & Boeckmann, B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 19 (Suppl.), 2247–2249 (1991).

    Article  CAS  Google Scholar 

  18. Merali, Z. & Giles, J. Databases in peril. Nature 435, 1010–1011 (2005).

    Article  CAS  Google Scholar 

  19. Horaitis, O. & Cotton, R. G. The challenge of documenting mutation across the genome: the human genome variation society approach. Hum. Mutat. 23, 447–452 (2004).

    Article  CAS  Google Scholar 

  20. Stenson, P. D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).

    Article  CAS  Google Scholar 

  21. Béroud, C., Collod- Béroud, G., Boileau, C., Soussi, T. & Junien, C. UMD (Universal Mutation Database): a generic software to build and analyze locus-specific databases. Hum. Mutat. 15, 86–94 (2000).

    Article  Google Scholar 

  22. Béroud, C. & Soussi, T. p53 and APC gene mutations: software and databases. Nucleic Acids Res. 25, 138–138 (1997).

    Article  Google Scholar 

  23. Wautot, V. et al. Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Hum. Mutat. 20, 35–47 (2002).

    Article  CAS  Google Scholar 

  24. Béroud, C. et al. Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Res. 26, 256–258 (1998).

    Article  Google Scholar 

  25. Jeanpierre, C., Béroud, C., Niaudet, P. & Junien, C. Software and database for the analysis of mutations in the human WT1 gene. Nucleic Acids Res. 26, 271–274 (1998).

    Article  CAS  Google Scholar 

  26. Collod, G., Béroud, C., Soussi, T., Junien, C. & Boileau, C. Software and database for the analysis of mutations in the human FBN1 gene. Nucleic Acids Res. 24, 137–140 (1996).

    Article  CAS  Google Scholar 

  27. Varret, M. et al. Software and database for the analysis of mutations in the human LDL receptor gene. Nucleic Acids Res. 25, 172–180 (1997).

    Article  CAS  Google Scholar 

  28. Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med. 5, 1071–1075 (1999).

    Article  CAS  Google Scholar 

  29. Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nature Genet. 30, 227–232 (2002).

    Article  CAS  Google Scholar 

  30. Soussi, T. The p53 tumour suppressor gene: a model for molecular epidemiology of human cancer. Mol. Med. Today 2, 32–37 (1996).

    Article  CAS  Google Scholar 

  31. Harris, C. C. p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and cancer risk assessment. Environ. Health Perspect. 104, 435–439 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nelson, D. R. 'A variant of uncertain significance' and the proliferation of human disease gene databases. Hum. Genomics 2, 70–74 (2005).

    Article  CAS  Google Scholar 

  33. Rodin, S. N., Holmquist, G. P. & Rodin, A. S. CPG transition strand asymmetry and hitch-hiking mutations as measures of tumorigenic selection in shaping the p53 mutation spectrum. Int. J. Mol. Med. 1, 191–199 (1998).

    CAS  PubMed  Google Scholar 

  34. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  35. Morral, N. et al. The origin of the major cystic fibrosis mutation (ΔF508) in European populations. Nature Genet. 7, 169–175 (1994).

    Article  CAS  Google Scholar 

  36. Beroud, C. et al. UMD (Universal Mutation Database): 2005 update. Hum. Mutat. 26, 184–191 (2005).

    Article  CAS  Google Scholar 

  37. Brown, A. F. & McKie, M. A. MuStaR and other software for locus-specific mutation databases. Hum. Mutat. 15, 76–85 (2000).

    Article  CAS  Google Scholar 

  38. Fokkema, I. F., den Dunnen, J. T. & Taschner, P. E. LOVD: easy creation of a locus-specific sequence variation database using an 'LSDB-in-a-box' approach. Hum. Mutat. 26, 63–68 (2005).

    Article  CAS  Google Scholar 

  39. den Dunnen, J. T. & Antonarakis, S. E. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 7–12 (2000).

    Article  CAS  Google Scholar 

  40. Maurer, S. M., Hugenholtz, P. B. & Onsrud, H. J. Intellectual property. Europe's database experiment. Science 294, 789–790 (2001).

    Article  CAS  Google Scholar 

  41. Greenbaum, D. & Gerstein, M. A universal legal framework as a prerequisite for database interoperability. Nature Biotechnol. 21, 979–982 (2003).

    Article  CAS  Google Scholar 

  42. Soussi, T. & Béroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Rev. Cancer 1, 233–240 (2001).

    Article  CAS  Google Scholar 

  43. Soussi, T. & Béroud, C. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum. Mutat. 21, 192–200 (2003).

    Article  CAS  Google Scholar 

  44. Bitton, A., Neuman, M. D. & Glantz, S. A. The p53 tumour suppressor gene and the tobacco industry: research, debate and conflict of interest. Lancet 365, 1–10 (2005).

    Article  Google Scholar 

  45. Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003).

    Article  CAS  Google Scholar 

  46. Soussi, T., Kato, S., Levy, P. P. & Ishioka, C. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum. Mutat. 25, 6–17 (2005).

    Article  CAS  Google Scholar 

  47. Krawczak, M. & Cooper, D. N. p53 mutations, benzo[a]pyrene and lung cancer. Mutagenesis 13, 319–320 (1998).

    Article  CAS  Google Scholar 

  48. Phelan, C. M. et al. Classification of BRCA1 missense variants of unknown clinical significance. J. Med. Genet. 42, 138–146 (2005).

    Article  CAS  Google Scholar 

  49. Fleming, M. A., Potter, J. D., Ramirez, C. J., Ostrander, G. K. & Ostrander, E. A. Understanding missense mutations in the BRCA1 gene: an evolutionary approach. Proc. Natl Acad. Sci. USA 100, 1151–1156 (2003).

    Article  CAS  Google Scholar 

  50. Tornaletti, S. & Pfeifer, G. P. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10, 1493–1499 (1995).

    CAS  PubMed  Google Scholar 

  51. You, Y. H., Li, C. & Pfeifer, G. P. Involvement of 5-methylcytosine in sunlight-induced mutagenesis. J. Mol. Biol. 293, 493–503 (1999).

    Article  CAS  Google Scholar 

  52. Denissenko, M. F., Chen, J. X., Tang, M. S. & Pfeifer, G. P. Cytosine methylation determines hot spots of DNA damage in the human p53 gene. Proc. Natl Acad. Sci. USA 94, 3893–3898 (1997).

    Article  CAS  Google Scholar 

  53. Soussi, T. et al. Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodological bias in mutation detection. Clin. Cancer Res. (in the press).

Download references

Acknowledgements

Development of the UMD software is supported by grants from AFM to C.B. and M.C. Work of T.S. is supported by the ARC and ligue contre le cancer (comité de Paris). We are grateful to Richard Cotton for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Soussi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colon cancer

hepatocellular carcinoma

lung cancer

OMIM

Marfan syndrome

von Hippel–Lindau syndrome

FURTHER INFORMATION

EMBL

GDB Human Genome Database

GenBank

Human Gene Mutation Database

Mutation Storage and Retrieval Program

Leiden Open Source Variation Database

MySQL

p53 database of the International Agency for Research on Cancer

Swiss-Prot

The p53 Database

Universal Mutation Database for p53

Waystation Project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soussi, T., Ishioka, C., Claustres, M. et al. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6, 83–90 (2006). https://doi.org/10.1038/nrc1783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing