Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Killing time for cancer cells

Abstract

As the signalling pathways that control cellular proliferation and death are unravelled, a range of targets have emerged as candidates for molecular cancer therapy. For their survival, cancer cells depend on a few highly activated signalling pathways; inhibition of these pathways has a strong apoptotic effect and can lead to tumour regression. But drugs that exploit this weakness, such as imatinib, have not cured patients: withdrawal of the drug leads to disease recurrence, and sustained treatment leads to the emergence of drug-resistant clones. Can cancer be cured, or will it have to be controlled as a chronic disease?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer cells are more sensitive to signal-transduction inhibitors than normal cells.
Figure 2: Protein tyrosine and serine/threonine kinases.
Figure 3: Cancer as a chronic disease.

Similar content being viewed by others

References

  1. Benhar, M., Engelberg, D. & Levitzki, A. ROS, stress-activated kinases and stress signalling in cancer. EMBO Rep. 3, 420–425 (2002).

    Article  CAS  Google Scholar 

  2. Yaish, P. et al. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242, 933–935 (1988).

    Article  CAS  Google Scholar 

  3. Levitzki, A. & Gazit, A. Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788 (1995).

    Article  CAS  Google Scholar 

  4. Levitzki, A. Signal-transduction therapy. A novel approach to disease management. Eur. J. Biochem. 226, 1–13 (1994).

    Article  CAS  Google Scholar 

  5. Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene 22, 3138–3151 (2003).

    Article  CAS  Google Scholar 

  6. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumour activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumour progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  Google Scholar 

  7. Karasarides, M. et al. B-RAF is a therapeutic target in melanoma. Oncogene 23, 6292–6298 (2004).

    Article  CAS  Google Scholar 

  8. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    Article  CAS  Google Scholar 

  9. Shapiro, G. I. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin. Cancer Res. 10, S4270–S4275 (2004).

    Article  Google Scholar 

  10. Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nature Rev. Cancer 5, 231–237 (2005).

    Article  CAS  Google Scholar 

  11. Schimmer, A. D. et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumour activity. Cancer Cell 5, 25–35 (2004).

    Article  CAS  Google Scholar 

  12. Guo, F. et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99, 3419–3426 (2002).

    Article  CAS  Google Scholar 

  13. Selivanova, G. et al. Reactivation of mutant p53: a new strategy for cancer therapy. Semin. Cancer Biol. 8, 369–378 (1998).

    Article  CAS  Google Scholar 

  14. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  15. Honda, T. et al. A recombinant adenovirus expressing wild-type Bax induces apoptosis in prostate cancer cells independently of their Bcl-2 status and androgen sensitivity. Cancer Biol. Ther. 1, 163–167 (2002).

    Article  CAS  Google Scholar 

  16. Franke, T. F. et al. PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983–8998 (2003).

    Article  CAS  Google Scholar 

  17. Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K–Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003).

    Article  CAS  Google Scholar 

  18. Fingar, D. C. & Blenis, J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151–3171 (2004).

    Article  CAS  Google Scholar 

  19. Hidalgo, M. & Rowinsky, E. K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19, 6680–6686 (2000).

    Article  CAS  Google Scholar 

  20. Mita, M. M., Mita, A. & Rowinsky, E. K. Mammalian target of rapamycin: a new molecular target for breast cancer. Clin. Breast Cancer 4, 126–137 (2003).

    Article  CAS  Google Scholar 

  21. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumours to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001).

    Article  CAS  Google Scholar 

  22. Vermeulen, K., Berneman, Z. N., and Van Bockstaele, D. R. Cell cycle and apoptosis. Cell Prolif. 36, 165–175 (2003).

    Article  CAS  Google Scholar 

  23. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colourectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  Google Scholar 

  24. Powis, G. & Kirkpatrick, L. Hypoxia inducible factor-1α as a cancer drug target. Mol. Cancer Ther. 3, 647–654 (2004).

    CAS  PubMed  Google Scholar 

  25. Kung, A. L. et al. Small molecule blockade of transcriptional co-activation of the hypoxia-inducible factor pathway. Cancer Cell 6, 33–43 (2004).

    Article  CAS  Google Scholar 

  26. Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukaemia. N. Engl. J. Med. 346, 645–652 (2002).

    Article  CAS  Google Scholar 

  27. Shet, A. S., Jahagirdar, B. N. & Verfaillie, C. M. Chronic myelogenous leukaemia: mechanisms underlying disease progression. Leukaemia 16, 1402–1411 (2002).

    Article  CAS  Google Scholar 

  28. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCRABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  Google Scholar 

  29. Roche-Lestienne, C. & Preudhomme, C. Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin. Hematol. 40, 80–82 (2003).

    Article  CAS  Google Scholar 

  30. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukaemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  Google Scholar 

  31. Gardembas, M. et al. Results of a prospective phase 2 study combining imatinib mesylate and cytarabine for the treatment of Philadelphia-positive patients with chronic myelogenous leukaemia in chronic phase. Blood 102, 4298–4305 (2003).

    Article  CAS  Google Scholar 

  32. Higashi, T. et al. Imatinib mesylate-sensitive blast crisis immediately after discontinuation of imatinib mesylate therapy in chronic myelogenous leukaemia: report of two cases. Am. J. Hematol. 76, 275–278 (2004).

    Article  CAS  Google Scholar 

  33. Cortes, J., O'Brien, S. & Kantarjian, H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 104, 2204–2205 (2004).

    Article  CAS  Google Scholar 

  34. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  Google Scholar 

  35. Warner, J. K. et al. Concepts of human leukemic development. Oncogene 23, 7164–7177 (2004).

    Article  CAS  Google Scholar 

  36. Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukaemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000).

    Article  CAS  Google Scholar 

  37. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukaemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  38. Al-Hajj, M. et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  39. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  Google Scholar 

  40. Fisher, B. et al. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J. Natl Cancer Inst. 93, 684–690 (2001).

    Article  CAS  Google Scholar 

  41. Georgantas, R. W. 3rd et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 64, 4434–4441 (2004).

    Article  CAS  Google Scholar 

  42. Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA 99, 16220–16225 (2002).

    Article  CAS  Google Scholar 

  43. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  Google Scholar 

  44. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  45. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  46. Sordella, R. et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    Article  CAS  Google Scholar 

  47. Debiec-Rychter, M. et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer 40, 689–695 (2004).

    Article  CAS  Google Scholar 

  48. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumour. J. Clin. Oncol. 21, 4342–4349 (2003).

    Article  CAS  Google Scholar 

  49. Tsai, C. M. et al. Enhancement of chemosensitivity by tyrphostin AG825 in high-p185(neu) expressing non-small cell lung cancer cells. Cancer Res. 56, 1068–1074 (1996).

    CAS  PubMed  Google Scholar 

  50. Gumireddy, K. et al. A non-ATP-competitive inhibitor of BCR–ABL overrides imatinib resistance. Proc. Natl Acad. Sci. USA 102, 1992–1997 (2005).

    Article  CAS  Google Scholar 

  51. Barnett, S. F. et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem. J. 385, 399–408 (2005).

    Article  CAS  Google Scholar 

  52. Lindsley, C. W. et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett. 15, 761–764 (2005).

    Article  CAS  Google Scholar 

  53. Buchdunger, E. et al. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein–tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc. Natl Acad. Sci. USA 92, 2558–2562 (1995).

    Article  CAS  Google Scholar 

  54. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  Google Scholar 

  55. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature Med. 2, 561–566 (1996).

    Article  CAS  Google Scholar 

  56. Buchdunger, E. et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295, 139–145 (2000).

    CAS  PubMed  Google Scholar 

  57. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  Google Scholar 

  58. Abrams, T. J. et al. SU11248 inhibits KIT and platelet-derived growth factor receptor β in preclinical models of human small cell lung cancer. Mol. Cancer Ther. 2, 471–478 (2003).

    Article  CAS  Google Scholar 

  59. Mendel, D. B. et al. In vivo antitumour activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  60. O'Farrell, A. M. et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101, 3597–3605 (2003).

    Article  CAS  Google Scholar 

  61. Levitzki, A. & Bohmer, F. D. Altered efficacy and selectivity of tyrosine kinase inhibitors of the activated states of protein tyrosine kinases. Anticancer Drug Des. 13, 731–734 (1998).

    CAS  PubMed  Google Scholar 

  62. Gangnus, R. et al. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin. Cancer Res. 10, 3457–3464 (2004).

    Article  CAS  Google Scholar 

  63. Etzioni, R. et al. The case for early detection. Nature Rev. Cancer 3, 243–252 (2003).

    Article  CAS  Google Scholar 

  64. von Eschenbach, A. C. A vision for the National Cancer Program in the United States. Nature Rev. Cancer 4, 820–828 (2004).

    Article  CAS  Google Scholar 

  65. Veenstra, T. D., Prieto, D. A. & Conrads, T. P. Proteomic patterns for early cancer detection. Drug Discov. Today 9, 889–897 (2004).

    Article  CAS  Google Scholar 

  66. Janne, P. A. & Mayer, R. J. Chemoprevention of colourectal cancer. N. Engl. J. Med. 342, 1960–1968 (2000).

    Article  CAS  Google Scholar 

  67. Khuri, F. R. & Cohen, V. Molecularly targeted approaches to the chemoprevention of lung cancer. Clin. Cancer Res. 10, S4249–S4253 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This article was written with support from a grant from the Infrastructure Programme of the Israeli Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank McCormick or Alexander Levitzki.

Ethics declarations

Competing interests

Frank McCormick is a shareholder in ONYX Pharmaceuticals

Related links

Related links

DATABASES

Entrez Gene

ABL

AKT

BAX

BCR

BRAF

caspase-9

CDK1

CDK2

CDK4

c-IAP1

c-IAP2

DIABLO

EGFR

ERBB2

HIF1α

KIT

MDM2

p53

PTEN

SRC

VEGF

VEGFR2

XIAP

National Cancer Institute

acute myeloid leukaemia

breast cancer

chronic myelogenous leukaemia

colon cancer

lung cancer

melanoma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, S., McCormick, F. & Levitzki, A. Killing time for cancer cells. Nat Rev Cancer 5, 573–580 (2005). https://doi.org/10.1038/nrc1651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing