Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of apoptosis in cancer development and treatment response

Abstract

The inactivation of programmed cell death, or apoptosis, is central to the development of cancer. This disabling of apoptotic responses might be a major contributor both to treatment resistance and to the observation that, in many tumours, apoptosis is not the main mechanism for the death of cancer cells in response to common treatment regimens. Importantly, this suggests that other modes of cell death are involved in the response to therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53-dependent apoptosis and malignancy.
Figure 2: Evidence for the stochastic nature of cell killing following ionizing radiation.
Figure 3: Short-term cell death assays versus long-term assays.
Figure 4: Chemotherapy and apoptosis in haematological malignancy.
Figure 5: Apoptotic versus non-apoptotic modes of cell death.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Sarasin, A. An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat. Res. 544, 99–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  5. Attardi, L. D. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat. Res. 569, 145–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hall, E. J. Radiobiology for the Radiologist (J. B. Lippincott Company, Philadelphia, 2000).

    Google Scholar 

  8. Wouters, B. G., Denko, N. C., Giaccia, A. J. & Brown, J. M. A p53 and apoptotic independent role for p21waf1 in tumour response to radiation therapy. Oncogene 18, 6540–6545 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Koike, M. et al. Dependence of chemotherapy response on p53 mutation status in a panel of human cancer lines maintained in nude mice. Cancer Sci. 95, 541–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Fichtner, I. et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur. J. Cancer 40, 298–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Lowe, S. W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Amundson, S. A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000).

    CAS  PubMed  Google Scholar 

  17. Abend, M. Reasons to reconsider the significance of apoptosis for cancer therapy. Int. J. Radiat. Biol. 79, 927–941 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Okada, H. & Mak, T. W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Rev. Cancer 4, 592–603 (2004).

    Article  CAS  Google Scholar 

  19. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. & Thompson, C. B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Chu, K., Teele, N., Dewey, M. W., Albright, N. & Dewey, W. C. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3σ and CDKN1A (p21) knockout cell lines. Radiat. Res. 162, 270–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Forrester, H. B., Albright, N., Ling, C. C. & Dewey, W. C. Computerized video time-lapse analysis of apoptosis of REC:Myc cells X-irradiated in different phases of the cell cycle. Radiat. Res. 154, 625–639 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Masters, J. R. & Koberle, B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nature Rev. Cancer 3, 517–525 (2003).

    Article  CAS  Google Scholar 

  24. Taniguchi, T. et al. Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Med. 9, 568–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gurubhagavatula, S. et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J. Clin. Oncol. 22, 2594–2601 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Endlich, B., Radford, I. R., Forrester, H. B. & Dewey, W. C. Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apoptosis in lymphoid cells. Radiat. Res. 153, 36–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Puck, T. T. & Markus, P. I. Action of x-rays on mammalian cells. J. Exper. Med. 103, 653–666 (1956).

    Article  CAS  Google Scholar 

  28. Reinhold, H. S. & De Bree, C. Tumour cure rate and cell survival of a transplantable rat rhabdomyosarcoma following x-irradiation. Eur. J. Cancer 4, 367–374 (1968).

    Article  CAS  PubMed  Google Scholar 

  29. Durand, R. E. Cure, regression and cell survival: a comparison of common radiobiological endpoints using an in vitro tumour model. Br. J. Radiol. 48, 556–571 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Teicher, B. A. in Molecular Cancer Therapeutics: Strategies for Drug Discovery and Development (ed. Prendergast, G. C.) 7–40 (John Wiley and Sons, Hoboken, New Jersey, 2004).

    Book  Google Scholar 

  31. Waldman, T. et al. Cell-cycle arrest versus cell death in cancer therapy. Nature Med. 3, 1034–1036 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Wouters, B. G., Giaccia, A. J., Denko, N. C. & Brown, J. M. Loss of p21Waf1/Cip1 sensitizes tumors to radiation by an apoptosis- independent mechanism. Cancer Res. 57, 4703–4706 (1997).

    CAS  PubMed  Google Scholar 

  33. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, J. M. NCI's anticancer drug screening program may not be selecting for clinically active compounds. Oncol. Res. 9, 213–215 (1997).

    CAS  PubMed  Google Scholar 

  35. Ruth, A. C. & Roninson, I. B. Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Res. 60, 2576–2578 (2000).

    CAS  PubMed  Google Scholar 

  36. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  Google Scholar 

  37. Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nature Med. 6, 1029–1035 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Withers, H. R., Mason, K. A. & Thames, H. D. Jr. Late radiation response of kidney assayed by tubule-cell survival. Br. J. Radiol. 59, 587–595 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Tucker, S. L. et al. Direct analyses of in vivo colony survival after single and fractionated doses of radiation. Int. J. Radiat. Biol. 59, 777–795 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Hendry, J. H., Cai, W. B., Roberts, S. A. & Potten, C. S. p53 deficiency sensitizes clonogenic cells to irradiation in the large but not the small intestine. Radiat. Res. 148, 254–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Potten, C. S. & Grant, H. K. The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Br. J. Cancer 78, 993–1003 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Komarova, E. A. et al. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J. 16, 1391–1400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, S. & Lambert, P. F. Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am. J. Pathol. 155, 1121–1127 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gudkov, A. V. & Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nature Rev. Cancer 3, 117–129 (2003).

    Article  CAS  Google Scholar 

  45. Held, K. D. Radiation-induced apoptosis and its relationship to loss of clonogenic survival. Apoptosis 2, 265–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Aldridge, D. R., Arends, M. J. & Radford, I. R. Increasing the susceptibility of the rat 208F fibroblast cell line to radiation-induced apoptosis does not alter its clonogenic survival dose–response. Br. J. Cancer 71, 571–577 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, J. W., Dionne, C. A., Kedersha, N. L. & Goldmacher, V. S. p53 status affects the rate of the onset but not the overall extent of doxorubicin-induced cell death in rat-1 fibroblasts constitutively expressing c-Myc. Cancer Res. 57, 176–182 (1997).

    CAS  PubMed  Google Scholar 

  48. Lock, R. B. & Stribinskiene, L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res. 56, 4006–4012 (1996).

    CAS  PubMed  Google Scholar 

  49. Yin, D. X. & Schimke, R. T. BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res. 55, 4922–4928 (1995).

    CAS  PubMed  Google Scholar 

  50. Tannock, I. F. & Lee, C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br. J. Cancer 84, 100–105 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ekert, P. G. et al. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J. Cell Biol. 165, 835–842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Westphal, C. H. et al. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nature Genet. 16, 397–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Merritt, A. J., Allen, T. D., Potten, C. S. & Hickman, J. A. Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after γ-irradiation. Oncogene 14, 2759–2766 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Kemp, C. J., Sun, S. & Gurley, K. E. p53 induction and apoptosis in response to radio- and chemotherapy in vivo is tumor-type-dependent. Cancer Res. 61, 327–332 (2001).

    CAS  PubMed  Google Scholar 

  55. Ling, V. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother. Pharmacol. 40 (Suppl.), 3–8 (1997).

    Article  Google Scholar 

  56. Tannock, I. F. Tumor physiology and drug resistance. Cancer Metastasis Rev. 20, 123–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Townsend, D. M. & Tew, K. D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, J. M. & Wilson, G. Apoptosis genes and resistance to cancer therapy: what do the experimental and clinical data tell us? Cancer Biol. Ther. 2, 477–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Altieri, D. C. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol. Med. 7, 542–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Thames, H. D., Petersen, C., Petersen, S., Nieder, C. & Baumann, M. Immunohistochemically detected p53 mutations in epithelial tumors and results of treatment with chemotherapy and radiotherapy. A treatment-specific overview of the clinical data. Strahlenther. Onkol. 178, 411–421 (2002).

    Article  PubMed  Google Scholar 

  61. Schmitt, C. A. & Lowe, S. W. Apoptosis and therapy. J. Pathol. 187, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Kovacs, M. S., Yudoh, K., Evans, J. W., Menke, D. & Brown, J. M. Stable translocations detected by fluorescence in situ hybridization: a rapid surrogate end point to evaluate the efficacy of a potentiator of tumor response to radiotherapy. Cancer Res. 57, 672–677 (1997).

    CAS  PubMed  Google Scholar 

  63. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martin Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

BCL2

BCL-X L

CDKN1A

MDR1

p53

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J., Attardi, L. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5, 231–237 (2005). https://doi.org/10.1038/nrc1560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing