Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Integrated global profiling of cancer

Abstract

Tumours are complex biological systems. No single type of molecular approach fully elucidates tumour behaviour, necessitating analysis at multiple levels encompassing genomics and proteomics. Integrated data sets are required to fully determine the contributions of genome alterations, host factors and environmental exposures to tumour growth and progression, as well as the consequences of interactions between malignant or premalignant cells and their microenvironment. The sheer amount and heterogeneous nature of data that need to be collected and integrated are daunting, but effort has already begun to address these obstacles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numerous components must be integrated to study the molecular basis of human cancer.
Figure 2: Integrated gene-expression profile of neoplastic transformation.
Figure 3: Path from data collection and integration to hypothesis testing.

Similar content being viewed by others

References

  1. Tapon, N. Modeling transformation and metastasis in Drosophila. Cancer Cell 4, 333–335 (2003).

    Article  CAS  Google Scholar 

  2. Rangarajan, A. & Weinberg, R. A. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev. Cancer 3, 952–359 (2003).

    Article  CAS  Google Scholar 

  3. Lamb, J. et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).

    Article  CAS  Google Scholar 

  4. Creighton, C. et al. Profiling of pathway-specific changes in gene expression following growth of human cancer cell lines transplanted into mice. Genome Biol. 4, R46 (2003).

    Article  Google Scholar 

  5. Albertson, D. G., Collins, C., McCormick, F. & Gray, J. W. Chromosome aberrations in solid tumors. Nature Genet. 34, 369–376 (2003).

    Article  CAS  Google Scholar 

  6. Albertson, D. G. & Pinkel, D. Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet. 2, R145–R152 (2003).

    Article  Google Scholar 

  7. Shi, H. et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res. 63, 2164–2171 (2003).

    CAS  PubMed  Google Scholar 

  8. Feltus, F. A., Lee, E. K., Costello, J. F., Plass, C. & Vertino, P. M. Predicting aberrant CpG island methylation. Proc. Natl Acad. Sci. USA 100, 12253–12258 (2003).

    Article  CAS  Google Scholar 

  9. Ntzani, E. E. & Ioannidis, J. P. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 362, 1439–1444 (2003).

    Article  CAS  Google Scholar 

  10. Simon, R. Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data. Br. J.Cancer 89, 1599–1604 (2003).

    Article  CAS  Google Scholar 

  11. Rhodes, D. R. et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. USA 101, 9309–9314 (2004).

    Article  CAS  Google Scholar 

  12. Lieberfarb, M. E. & Lin, M. Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res. 63, 4781–4785 (2003).

    CAS  PubMed  Google Scholar 

  13. Pollack, J. R. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl Acad. Sci. USA 99, 12963–12968 (2002).

    Article  CAS  Google Scholar 

  14. Wu, R. et al. Amplification and overexpression of the L-MYC proto-oncogene in ovarian carcinomas. Am. J. Pathol. 162, 1603–1610 (2003).

    Article  CAS  Google Scholar 

  15. Hanash, S. Disease proteomics. Nature 422, 226–232 (2003).

    Article  CAS  Google Scholar 

  16. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  17. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  Google Scholar 

  18. Nishizuka, S. & Charboneau, L. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA 100, 14229–14234 (2003).

    Article  CAS  Google Scholar 

  19. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinomas. Nature Med. 8, 816–824 (2002).

    Article  CAS  Google Scholar 

  20. Chen, G. et al. Protein profiles associated with survival in lung adenocarcinoma. Proc. Natl Acad. Sci. USA 100, 13537–13542 (2003).

    Article  CAS  Google Scholar 

  21. Brichory, F. M. et al. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl Acad. Sci. USA 98, 9824–9829 (2001).

    Article  CAS  Google Scholar 

  22. Albert, P. S. & Shih, J. H. Modeling tumor growth with random onset. Biometrics 59, 897–906 (2003).

    Article  Google Scholar 

  23. Telford, J. J., Saltzman, J. R., Kuntz, K. M. & Syngal, S. Impact of preoperative staging and chemoradiation versus postoperative chemoradiation on outcome in patients with rectal cancer: a decision analysis. J. Natl Cancer Inst. 96, 191–201 (2004).

    Article  Google Scholar 

  24. Merlino, G. & Noonan, F. P. Modeling gene-environment interactions in malignant melanoma. Trends Mol. Med. 9, 102–108 (2003).

    Article  CAS  Google Scholar 

  25. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  26. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46 (2002).

    Article  CAS  Google Scholar 

  27. Doniger, S. W. et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4, R7 (2003).

    Article  Google Scholar 

  28. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  29. Schacherer, F. et al. The TRANSPATH signal transduction database: a knowledge base on signal transduction networks. Bioinformatics 17, 1053–1057 (2001).

    Article  CAS  Google Scholar 

  30. Koike, A., Kobayashi, Y. & Takagi, T. Kinase pathway database: An integrated protein-kinase and NLP-Based protein-interaction resources. Genome Res. 13, 1231–1243 (2003).

    Article  CAS  Google Scholar 

  31. Bader, G. D., Betel, D. & Hogue, C. W. BIND: The biomolecular interation network database. Nucleic Acids Res. 31, 248–250 (2003).

    Article  CAS  Google Scholar 

  32. Xenarios, I. et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002).

    Article  CAS  Google Scholar 

  33. Gelovani-Tjuvajev, J. & Blasberg, R. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 4, 327–333 (2003).

    Article  Google Scholar 

  34. Zerhouni, E. The NIH Roadmap. Science 302, 63–72 (2003).

    Article  CAS  Google Scholar 

  35. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 32 (Database issue), D35–D40 (2004).

    Article  CAS  Google Scholar 

  36. Covitz, P. A. et al. caCORE: A common infrastructure for cancer informatics. Bioinformatics 19, 2404–2412 (2003).

    Article  CAS  Google Scholar 

  37. Zeeberg, B. R. et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

lung cancer

ovarian cancer

Entrez Gene

CDK4

CRK

cyclin D1

ERBB2

LMYC

phosphoglycerate kinase 1

TP53

TSC1

TSC2

FURTHER INFORMATION

ArrayExpress

Biocarta

Biomolecular Interaction Database

CaCORE

Cancer Biomedical Informatics Grid

Cancer Genome Anatomy Project

Cytoscape

Database of Interacting Proteins

DBCAT, The Public Catalog of Databases

Director's Challenge initiative

Early Detection Research Network

European Bioinformatics Institute

Gene Expression Omnibus

GenMAPP

Gene Ontology Consortium

GoMiner

Human Gene Expression Index

Human Protein Reference Database

International HapMap Project

InterPro

Kinase Pathway Database

Kyoto Encyclopedia of Genes and Genomes

Mouse Models of Human Cancers Consortium

National Cancer Institute Gene Expression Data Portal

National Cancer Research Institute Cancer Informatics web site

National Center for Biotechnology Information

National Institutes of Health Roadmap

Stanford Microarray Database

The Genome Database

Therapeutic Target Database

Transpath

UniProt/Swiss-Prot

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanash, S. Integrated global profiling of cancer. Nat Rev Cancer 4, 638–644 (2004). https://doi.org/10.1038/nrc1414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing