HIGHLIGHTS

HIGHLIGHT ADVISORS

AVI ASHKENAZI

GENENTECH, INC., SOUTH SAN FRANCISCO, CA, USA

JOSE BASELGA

VALL D'HEBRON UNIVERSITY HOSPITAL, BARCELONA, SPAIN

ANTON BERNS

NETHERLANDS CANCER INSTITUTE, AMSTERDAM, THE NETHERLANDS

MARIA BLASCO

CENTRO NACIONAL DE INVESTIGACIONES ONCÓLOGICAS, MADRID, SPAIN

RON DEPINHO

HARVARD MEDICAL SCHOOL, BOSTON, MA, USA

GLENN DRANOFF

DANA-FARBER CANCER INSTITUTE, BOSTON, MA, USA

RAKESH JAIN

MASSACHUSETTS GENERAL HOSPITAL, BOSTON, MA, USA

CHRISTOPH LENGAUER

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER, BALTIMORE, MD, USA

LANCE LIOTTA

NATIONAL CANCER INSTITUTE, BETHESDA, MD, USA

JOHN D. POTTER

FRED HUTCHINSON CANCER RESEARCH CENTER, SEATTLE, WA, USA

DAVID SIDRANSKY

JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE, BALTIMORE, MD, USA

BERT VOGELSTEIN

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER, BALTIMORE, MD, USA

ROBERT WEINBERG

WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH, CAMBRIDGE, MA, USA

ZENA WERB

UNIVERSITY OF CALIFORNIA AT SAN FRANCISCO, CA, USA

TUMOUR SUPPRESSORS

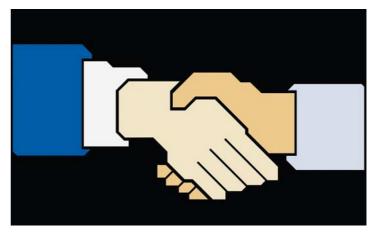
Conflict resolution

The activity of the peroxisome-proliferator-activated receptor (PPAR) family members has been implicated in various tumour types, although the evidence for one of these proteins — PPAR β/δ — has been contradictory. Raymond DuBois and colleagues have therefore used a mouse model of colorectal cancer, along with a Ppar β/δ selective agonist, to more clearly demonstrate the role of Ppar β/δ in tumour growth.

PPARs are a family of nuclear hormone receptors that function as ligand-activated transcription factors. PPAR β/δ is involved in development, wound healing, fatty-acid metabolism and repression of the inflammatory response. More importantly, the expression and activity of PPARβ/δ are increased after loss of the adenomatous polyposis coli (APC) tumour suppressor, which implicates it in the pathogenesis of colorectal cancer. To support this, a study showed that loss of both *PPAR* β/δ alleles from a colorectal cancer cell line slowed tumour growth. A separate study, however, reported that disruption of $Ppar\beta/\delta$ did not affect polyp formation in Apc^{min} mice — a model of intestinal polyposis that progresses to colorectal cancer, in which Apc is mutated. DuBois and colleagues therefore tested another approach to this problem ---they treated Apcmin mice with the selective Pparβ/δ agonist GW501516.

 $Ppar\beta/\delta$ is expressed primarily in the intestinal epithelial cells of both the normal intestinal epithelia and adenomas of Apc^{min} mice. Treating these mice with GW501516 led to a twofold increase in polyp number in the small intestine, but no change in the number of colon polyps. The mice that were treated with the Ppar β/δ agonist also showed a fivefold increase in polyps larger than 2 mm, so Ppar β/δ activation seems to affect the rate of polyp growth more than polyp formation. The polyps in these mice also had a slightly higher degree of dysplasia, indicating a more advanced stage of progression.

How does Ppar β/δ activation promote tumour growth? Although GW501516 had no effect on proliferation of colorectal cancer cells *in vitro*, it suppressed apoptosis in a dose-dependent manner. DuBois concluded that Ppar β/δ stimulates the growth and development of intestinal adenomas by activating anti-apoptotic pathways in intestinal epithelial cells. This finding has important implications for the clinic, as activating ligands of PPAR β/δ (including GW501516) are in the later stages of development as drugs to treat dyslipidaemia syndromes, obesity and atherosclerosis. PPAR β/δ agonists should be administered with caution, as they might increase the risk of cancer in individuals with familial adenomatous polyposis — a disease in which *APC* mutations lead to a high incidence of colorectal cancer.


Kristine Novak

References and links ORIGINAL RESEARCH PAPER Gupta, R. A. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nature Med. 1 Feb 2004 (doi:10.1038/nm993) FURTHER READING Michalik, L., Desvergne, B. & Wahli, W. Peroxisome-proliferator-activated

receptors and cancers: complex stories. *Nature Rev. Cancer* **4**, 61–70 (2004) WEB SITE

Raymond DuBois' lab:

https://medschool.mc.vanderbilt.edu/facultydata/ php_files/show_faculty.php?id3=760

