Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear transport and cancer: from mechanism to intervention

Key Points

  • Nuclear-cytoplasmic transport of oncogenes and tumour suppressors is disrupted in cancer cells. Transport can be regulated by modification of the cargo, at the level of the transport machinery or at the level of the nuclear-pore complex (NPC). Modifying the nuclearcytoplasmic transport activity might block tumorigenesis.

  • Karyopherin-α and karyopherin-β transport cargoes that contain nuclear localization signals (NLSs) into the nucleus through the NPC. CRM1 is the transport receptor that exports nuclear export signal (NES)-containing proteins out of the nucleus.

  • The RanGTP/GDP gradient across the nuclear envelope promotes the direction of transport.

  • Hyper-active forms of AKT can lead to the mislocalization and therefore inactivation of proteins such as the FOXO transcription factors and p27 cell-cycle inhibitor.

  • Wild-type p53 is mislocalized to the cytoplasm in many cancers, possibly due, in part, to association with the cytoplasmic anchor protein PARC.

  • Stable, nuclear β-catenin is a hallmark of colon cancer cells. Experiments have implicated inefficient export by a mutant form of APC as a possible cause of nuclear β-catenin.

  • Altered expression of nuclear transport factors, such as karyopherins and nucleoporins, have been implicated in tumorigenesis.

  • Leptomycin B is a potent and specific covalent inhibitor of CRM1 and can sequester proteins in the nucleus.

  • Visual, high-throughput and high-content small-molecule screens for compounds that re-direct mislocalized proteins to the correct cellular compartment might reveal novel anticancer agents.

Abstract

Nuclear-cytoplasmic transport, which occurs through special structures called nuclear pores, is an important aspect of normal cell function, and defects in this process have been detected in many different types of cancer cells. These defects can occur in the signal-transduction pathways that regulate the transfer of factors such as p53 and β-catenin in and out of the nucleus, or in the general nuclear import and export machinery itself. In some cases, nuclear transport factors are overproduced, whereas in others, chromosomal translocations disrupt the structural proteins that make up the nuclear pore, leading to cell transformation. How does disruption of nuclear-cytoplasmic transport promote transformation, and is this process a viable therapeutic target?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of nuclear-pore complex.
Figure 2: Nuclear-cytoplasmic transport of proteins.
Figure 3: Mislocalization of FOXO transcription factors and p27 by AKT phosphorylation.
Figure 4: Karyopherin-α reshuffling by CAS.

Similar content being viewed by others

References

  1. Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 (1993).

    CAS  PubMed  Google Scholar 

  2. Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell 69, 1133–1141 (1992).

    CAS  PubMed  Google Scholar 

  3. Goldberg, M. W. & Allen, T. D. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119, 1429–1440 (1992).

    CAS  PubMed  Google Scholar 

  4. Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391–401 (1999).

    CAS  PubMed  Google Scholar 

  5. Miller, B. R. & Forbes, D. J. Purification of the vertebrate nuclear pore complex by biochemical criteria. Traffic 1, 941–951 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rout, M. P. & Aitchison, J. D. The nuclear pore complex as a transport machine. J. Biol. Chem. 276, 16593–16596 (2001).

    CAS  PubMed  Google Scholar 

  8. Ryan, K. J. & Wente, S. R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12, 361–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999). Excellent review on nuclear transport factors and processes.

    Article  CAS  PubMed  Google Scholar 

  10. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    CAS  PubMed  Google Scholar 

  11. Strom, A. C. & Weis, K. Importin-β-like nuclear transport receptors. Genome Biol. 2, REVIEWS3008 (2001).

  12. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Gorlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Marelli, M., Dilworth, D. J., Wozniak, R. W. & Aitchison, J. D. The dynamics of karyopherin-mediated nuclear transport. Biochem. Cell Biol. 79, 603–612 (2001).

    CAS  PubMed  Google Scholar 

  14. Uchida, S. et al. Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene. Mol. Cell. Biol. 10, 577–584 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Feldherr, C. M. & Akin, D. Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells. J. Cell Biol. 115, 933–939 (1991).

    CAS  PubMed  Google Scholar 

  16. Rayet, B. & Gelinas, C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18, 6938–6947 (1999).

    CAS  PubMed  Google Scholar 

  17. Perkins, N. D. The Rel/NF-kappa B family: friend and foe. Trends Biochem. Sci. 25, 434–440 (2000).

    CAS  PubMed  Google Scholar 

  18. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κβ in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    CAS  Google Scholar 

  19. Henkel, T. et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κβ subunit. Cell 68, 1121–1133 (1992).

    CAS  PubMed  Google Scholar 

  20. Beg, A. A. et al. I κβ interacts with the nuclear localization sequences of the subunits of NF-κβ: a mechanism for cytoplasmic retention. Genes Dev. 6, 1899–1913 (1992).

    CAS  PubMed  Google Scholar 

  21. Ganchi, P. A., Sun, S. C., Greene, W. C. & Ballard, D. W. I κβ/MAD-3 masks the nuclear localization signal of NF-κβ p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol. Biol. Cell 3, 1339–1352 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, L. F. & Greene, W. C. Regulation of distinct biological activities of the NF-κβ transcription factor complex by acetylation. J. Mol. Med. 81, 549–557 (2003).

    CAS  PubMed  Google Scholar 

  23. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  24. del Peso, L., Gonzalez, V. M., Hernandez, R., Barr, F. G. & Nunez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 18, 7328–7333 (1999).

    CAS  PubMed  Google Scholar 

  25. Kops, G. J. P. L. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  26. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    CAS  PubMed  Google Scholar 

  27. Takaishi, H. et al. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc. Natl Acad. Sci. USA 96, 11836–11841 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang, E. D., Nunez, G., Barr, F. G. & Guan, K. L. Negative regulation of the forkhead transcription factor FKHR by Akt. J. Biol. Chem. 274, 16741–16746 (1999).

    CAS  PubMed  Google Scholar 

  29. Medema, R. H., Kops, G. J. P. L., Bos, J. L. & Burgering, B. M. T. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27KIP1. Nature 404, 782–787 (2000).

    CAS  PubMed  Google Scholar 

  30. Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982 (2000). FKHR or FOXO1a is mislocalized in PTEN -null cancer cells and reconstitution of FKHR to the nucleus results in cell-cycle arrest or apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rena, G., Prescott, A. R., Guo, S., Cohen, P. & Unterman, T. G. Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem. J. 354, 605–612 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    CAS  PubMed  Google Scholar 

  34. Vazquez, F. & Sellers, W. R. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim. Biophys. Acta 1470, M21–M35 (2000).

    CAS  PubMed  Google Scholar 

  35. Kondo, K. et al. PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines. Int. J. Cancer 91, 219–224 (2001).

    CAS  PubMed  Google Scholar 

  36. Kong, D. et al. PTEN1 is frequently mutated in primary endometrial carcinomas. Nature Genet. 17, 143–144 (1997).

    CAS  PubMed  Google Scholar 

  37. Wang, S. I. et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 57, 4183–4186 (1997).

    CAS  PubMed  Google Scholar 

  38. Brunet, A. et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell. Biol. 21, 952–965 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mazumdar, A. & Kumar, R. Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett. 535, 6–10 (2003).

    CAS  PubMed  Google Scholar 

  40. Rena, G. et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J. 21, 2263–2271 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Woods, Y. L. et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem. J. 355, 597–607 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Biggs, W. H., Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brownawell, A. M., Kops, G. J., Macara, I. G. & Burgering, B. M. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell. Biol. 21, 3534–3546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramaswamy, S. et al. Regulation of G1 progression by the PTEN tumor supressor protein is linked to inhibition of the phosphatidylinositol-3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA 96, 2110–2115 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blain, S. W. & Massague, J. Breast cancer banishes p27 from nucleus. Nature Med. 8, 1076–1078 (2002).

    CAS  PubMed  Google Scholar 

  46. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).

    CAS  PubMed  Google Scholar 

  47. Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).

    CAS  PubMed  Google Scholar 

  48. Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med. 8, 1136–1144 (2002). References 46–48 show how p27 phosphorylation by Akt results in p27 nuclear export and cell proliferation.

    CAS  PubMed  Google Scholar 

  49. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    CAS  PubMed  Google Scholar 

  50. Ryan, K. M., Phillips, A. C. & Vousden, K. H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332–337 (2001).

    CAS  PubMed  Google Scholar 

  51. Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A. & Rotter, V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10, 6565–6577 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang, S. H., Hong, D. & Clarke, M. F. Cooperation of a single lysine mutation and a C-terminal domain in the cytoplasmic sequestration of the p53 protein. J. Biol. Chem. 273, 19817–19821 (1998).

    CAS  PubMed  Google Scholar 

  53. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001).

    CAS  PubMed  Google Scholar 

  55. Tao, W. & Levine, A. J. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl Acad. Sci. USA 96, 3077–3080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).

    CAS  PubMed  Google Scholar 

  57. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000).

    CAS  PubMed  Google Scholar 

  58. Lohrum, M. A., Woods, D. B., Ludwig, R. L., Balint, E. & Vousden, K. H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521–8532 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gu, J., Nie, L., Wiederschain, D. & Yuan, Z. M. Identification of p53 sequence elements that are required for MDM2-mediated nuclear export. Mol. Cell. Biol. 21, 8533–8546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Harris, C. C. & Hollstein, M. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329, 1318–1327 (1993).

    CAS  PubMed  Google Scholar 

  61. Moll, U. M., Riou, G. & Levine, A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl Acad. Sci. USA 89, 7262–7266 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Horak, E. et al. Mutant p53, EGF receptor and c-erbB-2 expression in human breast cancer. Oncogene 6, 2277–2284 (1991).

    CAS  PubMed  Google Scholar 

  63. Moll, U. M., LaQuaglia, M., Benard, J. & Riou, G. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc. Natl Acad. Sci. USA 92, 4407–4411 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Isaacs, J. S., Hardman, R., Carman, T. A., Barrett, J. C. & Weissman, B. E. Differential subcellular p53 localization and function in N- and S-type neuroblastoma cell lines. Cell Growth Differ. 9, 545–555 (1998).

    CAS  PubMed  Google Scholar 

  65. Flamini, G. et al. Prognostic significance of cytoplasmic p53 overexpression in colorectal cancer. An immunohistochemical analysis. Eur. J. Cancer 32A, 802–806 (1996).

    CAS  PubMed  Google Scholar 

  66. Runnebaum, I. B., Kieback, D. G., Mobus, V. J., Tong, X. W. & Kreienberg, R. Subcellular localization of accumulated p53 in ovarian cancer cells. Gynecol. Oncol. 61, 266–271 (1996).

    CAS  PubMed  Google Scholar 

  67. Schlamp, C. L., Poulsen, G. L., Nork, T. M. & Nickells, R. W. Nuclear exclusion of wild-type p53 in immortalized human retinoblastoma cells. J. Natl Cancer Inst. 89, 1530–1536 (1997).

    CAS  PubMed  Google Scholar 

  68. Moll, U. M. et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol. Cell. Biol. 16, 1126–1137 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu, W. et al. Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19, 232–240 (2000).

    CAS  PubMed  Google Scholar 

  70. Sengupta, S., Vonesch, J. L., Waltzinger, C., Zheng, H. & Wasylyk, B. Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. EMBO J. 19, 6051–6064 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nikolaev, A. Y., Li, M., Puskas, N., Qin, J. & Gu, W. Parc: a cytoplasmic anchor for p53. Cell 112, 29–40 (2003). Evidence showing PARC is a cytoplasmic anchor protein and is important in p53 mislocalization by binding and sequestering p53 in the cytoplasm.

    CAS  PubMed  Google Scholar 

  72. Craig, E., Zhang, Z. K., Davies, K. P. & Kalpana, G. V. A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis. EMBO J. 21, 31–42 (2002). First report of an NES masking mechanism for INI1 export.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    CAS  PubMed  Google Scholar 

  74. Sevenet, N. et al. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum. Mol. Genet. 8, 2359–2368 (1999).

    CAS  PubMed  Google Scholar 

  75. Biegel, J. A. et al. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin. Cancer Res. 8, 3461–3467 (2002).

    CAS  PubMed  Google Scholar 

  76. Yung, E. et al. Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nature Med. 7, 920–926 (2001).

    CAS  PubMed  Google Scholar 

  77. Ae, K. et al. Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells. Oncogene 21, 3112–3120 (2002).

    CAS  PubMed  Google Scholar 

  78. Versteege, I., Medjkane, S., Rouillard, D. & Delattre, O. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 21, 6403–6412 (2002).

    CAS  PubMed  Google Scholar 

  79. Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. & Weissman, B. E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21, 5193–5203 (2002).

    CAS  PubMed  Google Scholar 

  80. Zhang, Z. K. et al. Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol. Cell. Biol. 22, 5975–5988 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653, 1–24 (2003).

    CAS  PubMed  Google Scholar 

  82. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  83. Henderson, B. R. & Fagotto, F. The ins and outs of APC and β-catenin nuclear transport. EMBO Rep. 3, 834–839 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fabbro, M. & Henderson, B. R. Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp. Cell Res. 282, 59–69 (2003).

    CAS  PubMed  Google Scholar 

  85. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    CAS  PubMed  Google Scholar 

  86. Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    CAS  PubMed  Google Scholar 

  87. Nagase, H. & Nakamura, Y. Mutations of the APC (adenomatous polyposis coli) gene. Hum. Mutat. 2, 425–434 (1993).

    CAS  PubMed  Google Scholar 

  88. Rosin-Arbesfeld, R., Cliffe, A., Brabletz, T. & Bienz, M. Nuclear export of the APC tumour suppressor controls β-catenin function in transcription. EMBO. J. 22, 1101–1113 (2003). Indicates that APC truncations might contribute to β-catenin nuclear localization and oncogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell 10, 1119–1131 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fagotto, F., Gluck, U. & Gumbiner, B. M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 8, 181–190 (1998).

    CAS  PubMed  Google Scholar 

  91. Malik, H. S., Eickbush, T. H. & Goldfarb, D. S. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl Acad. Sci. USA 94, 13738–13742 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Suh, E. K. & Gumbiner, B. M. Translocation of β-catenin into the nucleus independent of interactions with FG-rich nucleoporins. Exp. Cell Res. 290, 447–456 (2003).

    CAS  PubMed  Google Scholar 

  93. Neufeld, K. L. et al. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc. Natl Acad. Sci. USA 97, 12085–12090 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol. 2, 653–660 (2000).

    CAS  PubMed  Google Scholar 

  95. Neufeld, K. L., Zhang, F., Cullen, B. R. & White, R. L. APC-mediated downregulation of β-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep. 1, 519–523 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000).

    CAS  PubMed  Google Scholar 

  97. Eleftheriou, A., Yoshida, M. & Henderson, B. R. Nuclear export of human β-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J. Biol. Chem. 276, 25883–25888 (2001).

    CAS  PubMed  Google Scholar 

  98. Kim, I. S. et al. Truncated form of importin α identified in breast cancer cell inhibits nuclear import of p53. J. Biol. Chem. 275, 23139–23145 (2000). Truncated form of karyopherin-α in breast cancer cells leads to p53 cytoplasmic mislocalization and might contribute to tumorigenesis.

    CAS  PubMed  Google Scholar 

  99. Brinkmann, U., Gallo, M., Polymeropoulos, M. H. & Pastan, I. The human CAS (cellular apoptosis susceptibility) gene mapping on chromosome 20q13 is amplified in BT474 breast cancer cells and part of aberrant chromosomes in breast and colon cancer cell lines. Genome Res. 6, 187–194 (1996).

    CAS  PubMed  Google Scholar 

  100. Behrens, P., Brinkmann, U., Fogt, F., Wernert, N. & Wellmann, A. Implication of the proliferation and apoptosis associated CSE1L/CAS gene for breast cancer development. Anticancer Res. 21, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  101. Wellmann, A. et al. High expression of the proliferation and apoptosis associated CSE1L/CAS gene in hepatitis and liver neoplasms: correlation with tumor progression. Int. J. Mol. Med. 7, 489–494 (2001).

    CAS  PubMed  Google Scholar 

  102. Brinkmann, U., Brinkmann, E., Gallo, M. & Pastan, I. Cloning and characterization of a cellular apoptosis susceptibility gene, the human homologue to the yeast chromosome segregation gene CSE1. Proc. Natl Acad. Sci. USA 92, 10427–10431 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).

    CAS  PubMed  Google Scholar 

  104. Brinkmann, U., Brinkmann, E., Gallo, M., Scherf, U. & Pastan, I. Role of CAS, a human homologue to the yeast chromosome segregation gene CSE1, in toxin and tumor necrosis factor mediated apoptosis. Biochemistry 35, 6891–6899 (1996).

    CAS  PubMed  Google Scholar 

  105. Ogryzko, V. V., Brinkmann, E., Howard, B. H., Pastan, I. & Brinkmann, U. Antisense inhibition of CAS, the human homologue of the yeast chromosome segregation gene CSE1, interferes with mitosis in HeLa cells. Biochemistry 36, 9493–9500 (1997).

    CAS  PubMed  Google Scholar 

  106. Scherf, U., Pastan, I., Willingham, M. C. & Brinkmann, U. The human CAS protein which is homologous to the CSE1 yeast chromosome segregation gene product is associated with microtubules and mitotic spindle. Proc. Natl Acad. Sci. USA 93, 2670–2674 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Behrens, P., Brinkmann, U. & Wellmann, A. CSE1L/CAS: its role in proliferation and apoptosis. Apoptosis 8, 39–44 (2003).

    CAS  PubMed  Google Scholar 

  108. Scherf, U., Kalab, P., Dasso, M., Pastan, I. & Brinkmann, U. The hCSE1/CAS protein is phosphorylated by HeLa extracts and MEK-1: MEK-1 phosphorylation may modulate the intracellular localization of CAS. Biochem. Biophys. Res. Commun. 250, 623–628 (1998).

    CAS  PubMed  Google Scholar 

  109. Tomiyasu, T., Sasaki, M., Kondo, K. & Okada, M. Chromosome banding studies in 106 cases of chronic myelogenous leukemia. Jinrui Idengaku Zasshi 27, 243–258 (1982).

    CAS  PubMed  Google Scholar 

  110. Borrow, J. et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nature Genet. 12, 159–167 (1996).

    CAS  PubMed  Google Scholar 

  111. Nakamura, T. et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nature Genet. 12, 154–158 (1996). References 110 and 111 are the first reports to describe the NUP98–HOXA9 fusion in AML.

    CAS  PubMed  Google Scholar 

  112. Fornerod, M. et al. Relocation of the carboxy terminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene 10, 1739–1748 (1995).

    CAS  PubMed  Google Scholar 

  113. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    CAS  PubMed  Google Scholar 

  114. Lam, D. H. & Aplan, P. D. NUP98 gene fusions in hematologic malignancies. Leukemia 15, 1689–1695 (2001).

    CAS  PubMed  Google Scholar 

  115. Kasper, L. H. et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98–HOXA9 oncogenicity. Mol. Cell Biol. 19, 764–776 (1999). Demonstrated that the NUP98–HOXA9 fusion protein has transcriptional activity with p300 and CBP, explaining a possible mode of oncogenicity in AML.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Radu, A., Moore, M. S. & Blobel, G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81, 215–222 (1995).

    CAS  PubMed  Google Scholar 

  117. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    CAS  PubMed  Google Scholar 

  118. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    CAS  PubMed  Google Scholar 

  119. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311 (1997).

    CAS  PubMed  Google Scholar 

  120. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141–144 (1997).

    CAS  PubMed  Google Scholar 

  121. Stade, K., Ford, C. S., Guthrie, C. & Weis, K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90, 1041–1050 (1997). References 118–121 identify CRM1 as the transport receptor for NES-containing cargo proteins.

    CAS  PubMed  Google Scholar 

  122. Kudo, N. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl Acad. Sci. USA 96, 9112–9117 (1999). Demonstrated that LMB covalently modifies CRM1, possibly through a Michael-type addition.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Akakura, S., Yoshida, M., Yoneda, Y. & Horinouchi, S. A role for Hsc70 in regulating nucleocytoplasmic transport of a temperature-sensitive p53 (p53Val-135). J. Biol. Chem. 276, 14649–14657 (2001).

    CAS  PubMed  Google Scholar 

  124. Neville, M. & Rosbash, M. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J. 18, 3746–3756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Newlands, E. S., Rustin, G. J. & Brampton, M. H. Phase I trial of elactocin. Br. J. Cancer 74, 648–649 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kau, T. R. et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN deficient tumor cells. Cancer Cell 4, 463–476 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela A. Silver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute myelogenous leukaemia

breast cancer

childhood acute lymphoblastic leukaemia

colorectal cancer

endometrial cancer

glioblastoma multiforme

Hodgkin's lymphoma

melanoma

neuroblastoma

oesophageal cancer

ovarian cancer

prostate cancer

renal-cell carcinoma

retinoblastoma

thyroid cancer

LocusLink

AKT

APC

β-catenin

CAS

CDK2

CK1

CRM1

CTNNB1

DYRK1A

FOXO1a

FOXO3a

FOXO4

GSK3

HOXA9

INI1

karyopherin-α

karyopherin-β

LEF1

MDM2

MEK1

NF-κB

NUP98

NUP214

p27

p53

p300

PAK1

PARC

PTEN

SGK

FURTHER INFORMATION

Advances in Cell Nucleus Research

Institute of Chemistry and Cell Biology and Initiative for Chemical Genetics

Silver lab web site

The cell nucleus webring

Glossary

NUCLEAR-PORE COMPLEX

An aqueous channel that is composed of proteins (called nucleoporins) in the nuclear envelope, through which macromolecules move between the nucleus and cytoplasm.

FORKHEAD TRANSCRIPTION-FACTOR SUPERFAMILY

A large superfamily of transcription factors, of which one family, FOXO, is phosphorylated and inhibited by AKT/PKB.

COWDEN'S DISEASE

Also known as multiple harmatoma syndrome. An autosomal-dominant condition that is marked by hereditary predisposition for developing cancers due to mutation of the PTEN gene.

LEPTOMYCIN B

A natural product that is isolated from Streptomyces and that inhibits CRM1 export activity by covalently binding to the Cys528 residue and preventing CRM1–substrate binding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kau, T., Way, J. & Silver, P. Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4, 106–117 (2004). https://doi.org/10.1038/nrc1274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing