Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The SWI/SNF complex — chromatin and cancer

Key Points

  • The SWI/SNF complex is an evolutionarily conserved multi-subunit chromatin-remodelling complex, which uses the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin, and thereby regulate transcription of target genes.

  • This complex is implicated in cancer development, as several subunits either possess intrinsic tumour-suppressor activity or are required for the activity of other tumour-suppressor genes.

  • SNF5 (also known as INI1), a core subunit of SWI/SNF, is specifically inactivated in malignant rhabdoid tumours, a highly aggressive cancer of early childhood.

  • Whereas homozygous inactivation of Snf5 is embryonic lethal in mice, heterozygous mice are predisposed to develop cancers that readily metastasize and have loss of heterozygosity for Snf5. Inducible inactivation of conditional alleles of Snf5 results in extremely rapid and fully penetrant cancer development.

  • Specific mutations in BRG1 — an ATPase catalytic subunit of the SWI/SNF complex — have been identified in pancreatic, breast, lung and prostate cancer cell lines. Mice that are deficient in Brg1 are embryonic lethal, whereas haploinsufficient mice are predisposed to tumour development at a low incidence.

  • SWI/SNF complexes directly interact with tumour suppressors and oncogenes, such as RB, BRCA1, c-MYC and MLL (mixed-lineage leukaemia).

  • The SWI/SNF complex might also be involved in DNA synthesis, mitotic gene regulation and viral integration. The relationship between these activities and the role of the SWI/SNF complex in cancer development remains to be elucidated.

Abstract

The SWI/SNF complex is an evolutionarily conserved multi-subunit chromatin-remodelling complex, which uses the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin. Increasing evidence supports a role for this complex in cancer development, as several subunits possess intrinsic tumour-suppressor activity or are required for the activity of other tumour-suppressor genes. For example, conditional inactivation of the Snf5 gene resulted in a highly penetrant cancer phenotype in mice. So, what are the links between the SWI/SNF complex and cancer, and what mechanisms might facilitate its involvement in oncogenesis?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooperation between two classes of chromatin-remodelling complexes.
Figure 2: Yeast and human SWI/SNF complexes and their subunits.
Figure 3: Mechanism of SWI/SNF nucleosome remodelling.
Figure 4: Distinct tumours result from inactivation of Snf5 and Brg1 in mice.
Figure 5: Method for generation of conditional Snf5 knockouts.
Figure 6: SWI/SNF is required for cell-cycle regulation by retinoblastoma.

Similar content being viewed by others

References

  1. Neely, K. E. & Workman, J. L. Histone acetylation and chromatin remodeling: which comes first? Mol. Genet. Metab. 76, 1–5 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Geiman, T. M. & Robertson, K. D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J. Cell. Biochem. 87, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Cairns, B. R. Emerging roles for chromatin remodeling in cancer biology. Trends Cell Biol. 11, S15–S21 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 3364–3369 (2000). Microarray analysis of yeast mutants demonstrating that SWI/SNF controls transcription at specific loci, has differential effects in rich versus minimal media, and acts to both repress and activate transcription of 5% of yeast genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Phelan, M. L., Sif, S., Narlikar, G. J. & Kingston, R. E. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3, 247–253 (1999). Defines the functional core of human SWI/SNF by showing that SNF5, BAF155, BAF170 and either BRG1 or BRM have in vitro remodelling activity equal to the whole complex.

    Article  CAS  PubMed  Google Scholar 

  9. Schnitzler, G. R., Sif, S. & Kingston, R. E. A model for chromatin remodeling by the SWI/SNF family. Cold Spring Harb. Symp. Quant. Biol. 63, 535–543 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Schnitzler, G., Sif, S. & Kingston, R. E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94, 17–27 (1998). Demonstrates that SWI/SNF acts by facilitating an exchange between normal and altered, more accessible, nucleosome conformations.

    Article  CAS  PubMed  Google Scholar 

  11. Kassabov, S. R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899–1910 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, W. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. Curr. Top. Microbiol. Immunol. 274, 143–169 (2003).

    CAS  PubMed  Google Scholar 

  14. Flanagan, J. F. & Peterson, C. L. A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res. 27, 2022–2028 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, D., Sohn, H., Kalpana, G. V. & Choe, J. Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA. Nature 399, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Yung, E. et al. Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nature Med. 7, 920–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R. & Goff, S. P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266, 2002–2006 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Krebs, J. E., Fry, C. J., Samuels, M. L. & Peterson, C. L. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 102, 587–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  20. Sevenet, N. et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet. 65, 1342–1348 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Rorke, L. B., Packer, R. & Biegel, J. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J. Neurooncol. 24, 21–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Biegel, J. A. et al. Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and renal rhabdoid tumor. Genes Chromosomes Cancer 28, 31–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Savla, J. et al. Mutations of the hSNF5/INI1 gene in renal rhabdoid tumors with second primary brain tumors. J. Natl Cancer Inst. 92, 648–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, M. D. et al. Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am. J. Hum. Genet. 66, 1403–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sevenet, N. et al. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype–phenotype correlations. Hum. Mol. Genet. 8, 2359–2368 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Weber, M., Stockhammer, F., Schmitz, U. & von Deimling, A., Mutational analysis of INI1 in sporadic human brain tumors. Acta Neuropathol. 101, 479–482 (2001).

    CAS  PubMed  Google Scholar 

  28. Gessi, M., Giangaspero, F. & Pietsch, T. Atypical teratoid/rhabdoid tumors and choroid plexus tumors: when genetics 'surprise' pathology. Brain Pathol. 13, 409–414 (2003).

    Article  PubMed  Google Scholar 

  29. Schmitz, U. et al. INI1 mutations in meningiomas at a potential hotspot in exon 9. Br. J. Cancer 84, 199–201 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biegel, J. A. et al. Mutations of the INI1 rhabdoid tumor suppressor gene in medulloblastomas and primitive neuroectodermal tumors of the central nervous system. Clin. Cancer Res. 6, 2759–2763 (2000).

    CAS  PubMed  Google Scholar 

  31. Uno, K. et al. Aberrations of the hSNF5/INI1 gene are restricted to malignant rhabdoid tumors or atypical teratoid/rhabdoid tumors in pediatric solid tumors. Genes Chromosom. Cancer 34, 33–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Haas, J. E., Palmer, N. F., Weinberg, A. G. & Beckwith, J. B. Ultrastructure of malignant rhabdoid tumor of the kidney. A distinctive renal tumor of children. Hum. Pathol. 12, 646–657 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA 97, 13796–13800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guidi, C. J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21, 3598–3603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberts, C. W., Leroux, M. M., Fleming, M. D. & Orkin, S. H. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2, 415–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Versteege, I., Medjkane, S., Rouillard, D. & Delattre, O. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1–S transition of the cell cycle. Oncogene 21, 6403–6412 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. & Weissman, B. E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21, 5193–5203 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Oruetxebarria, I. et al. p16INK4a is required for hSNF5 chromatin-remodeler induced cellular senescence in malignant rhabdoid tumor cells. J. Biol. Chem. (2003).

  42. Laurent, B. C., Treich, I. & Carlson, M. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7, 583–591 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Dingwall, A. K. et al. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol. Biol. Cell 6, 777–791 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elfring, L. K., Deuring, R., McCallum, C. M., Peterson, C. L. & Tamkun, J. W. Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol. Cell. Biol. 14, 2225–2234 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Randazzo, F. M., Khavari, P., Crabtree, G., Tamkun, J. & Rossant, J. brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev. Biol. 161, 229–242 (1994).

    Article  PubMed  Google Scholar 

  46. Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Chiba, H., Muramatsu, M., Nomoto, A. & Kato, H. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22, 1815–1820 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Decristofaro, M. F. et al. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J. Cell. Physiol. 186, 136–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, A. K. et al. BRG1, a component of the SWI–SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 60, 6171–6177 (2000).

    CAS  PubMed  Google Scholar 

  51. Reisman, D. N., Sciarrotta, J., Wang, W., Funkhouser, W. K. & Weissman, B. E. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res. 63, 560–566 (2003).

    CAS  PubMed  Google Scholar 

  52. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000). This study shows that inactivation of Brg1 in mice is embryonic lethal and that haploinsufficiency predisposes to a low rate of tumour formation.

    Article  CAS  PubMed  Google Scholar 

  53. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17, 6979–6991 (1998). This study demonstrates that Brm is not required for survival of mice, but that its loss causes increased cell proliferation, decreased cell-cycle arrest and results in heavier animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dunaief, J. L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130 (1994). A key report demonstrating physical and functional cooperation between RB and the SWI/SNF complex.

    Article  CAS  PubMed  Google Scholar 

  55. Strobeck, M. W. et al. BRG-1 is required for RB-mediated cell cycle arrest. Proc. Natl Acad. Sci. USA 97, 7748–7753 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, H. S. et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Trouche, D., Le Chalony, C., Muchardt, C., Yaniv, M. & Kouzarides, T. RB and hbrm cooperate to repress the activation functions of E2F1. Proc. Natl Acad. Sci. USA 94, 11268–11273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Bochar, D. A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000). This paper demonstrated that BRCA1 directly interacts with BRG1 and that BRCA1-dependent transcription is abrogated by a dominant-negative form of BRG1.

    Article  CAS  PubMed  Google Scholar 

  60. D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  61. Park, J., Wood, M. A. & Cole, M. D. BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol. Cell. Biol. 22, 1307–1316 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng, S. W. et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nature Genet. 22, 102–105 (1999). An important paper demonstrating that SNF5 directly binds to c-MYC and is necessary for its transactivating activity.

    Article  CAS  PubMed  Google Scholar 

  63. Amati, B., Frank, S. R., Donjerkovic, D. & Taubert, S. Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim. Biophys. Acta 1471, M135–M145 (2001).

    CAS  PubMed  Google Scholar 

  64. Takayama, M. A., Taira, T., Tamai, K., Iguchi-Ariga, S. M. & Ariga, H. ORC1 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc-SNF5/INI1 interaction. Genes Cells 5, 481–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Rozenblatt-Rosen, O. et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl Acad. Sci. USA 95, 4152–4157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nie, Z. et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol. Cell. Biol. 23, 2942–2452 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Debernardi, S. et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99, 275–281 (2002).

    Article  PubMed  Google Scholar 

  68. Adler, H. T. et al. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol. Cell. Biol. 19, 7050–7060 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Murphy, D. J., Hardy, S. & Engel, D. A. Human SWI-SNF component BRG1 represses transcription of the c-fos gene. Mol. Cell. Biol. 19, 2724–2733 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, D. et al. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem. 11, 11 (2002).

    CAS  Google Scholar 

  72. Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 20, 4935–4943 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kadam, S. & Emerson, B. M. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Strobeck, M. W. et al. The BRG-1 subunit of the SWI/SNF complex regulates CD44 expression. J. Biol. Chem. 276, 9273–9278 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Look, A. T. Oncogenic role of 'master' transcription factors in human leukemias and sarcomas: a developmental model. Adv. Cancer Res. 67, 25–57 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Kadam, S. et al. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14, 2441–2451 (2000). Shows that specific domains of certain transcription factors differentially target SWI/SNF complexes to chromatin in a gene-selective manner and that individual SWI/SNF subunits have unique roles in transcription-factor-directed nucleosome remodelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klochendler-Yeivin, A., Muchardt, C. & Yaniv, M. SWI/SNF chromatin remodeling and cancer. Curr. Opin. Genet. Dev. 12, 73–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Sudarsanam, P. & Winston, F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 16, 345–351 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.W.M.R. would like to acknowledge funding support from the Hope Street Kids foundation and the Claudia Adams Barr foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. M. Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

lung cancer

non-small-cell lung cancer

ovarian cancer

pancreatic cancer

prostate cancer

LocusLink

BAF155

BAF170

BAF53

β-catenin

BRCA1

BRG1

BRM

CD44

CDK4

c-MYC

HOXA7

Ink4a

MLL

p53

RB

SNF5

WNT

Glossary

CHROMATIN-REMODELLING COMPLEX

A polypeptide complex that can compact or relax the secondary and tertiary structure of chromatin.

HOMOLOGUES

Genes (or proteins) that share a common ancestor and are usually similar in sequence.

ORTHOLOGUE

The form of a gene (or protein) in one species that corresponds most directly to a similar gene in another species.

KNUDSON'S TWO-HIT HYPOTHESIS

In 1971, Alfred Knudson proposed that two successive genetic 'hits' are required to turn a normal cell into a tumour cell and that, in familial cancers, one hit was inherited.

LOSS OF HETEROZYGOSITY

(LOH). In cells that carry a mutated allele of a tumour-suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele. Regions with a high frequency of LOH are believed to harbour tumour-suppressor genes.

PENETRANCE

The frequency with which individuals who carry a given gene will show the manifestations that are associated with the gene. If penetrance of a disease allele is 100%, then all individuals who carry that allele will express the associated disorder.

CRE RECOMBINASE

Bacteriophage-derived enzyme that causes DNA recombination between two LoxP recognition sites. A transgenic promoter can be used to direct Cre expression, thereby restricting inactivation of a gene to specific tissues or time points.

LOXP SITE

A LoxP (locus of X-ing over) site is a 34-base-pair (bp) directional DNA sequence that consists of two 13-bp inverted repeats separated by an 8-bp asymmetric spacer region.

KARYOTYPES

Complete set of chromosomes of a cell or organism.

HAPLOINSUFFICIENCY

A phenotypic state that results from loss of one functional allele of any given gene in diploid cells. Sometimes also called allelic insufficiency.

MENDELIAN FREQUENCY

Frequency of offspring with a particular phenotype or genotype expected in accordance with Mendel's Law.

DOMINANT-NEGATIVE MUTANT

A defective protein that inhibits wild-type function by retaining interaction capabilities that result in distortion or competition with normal proteins.

FANCONI ANAEMIA

A genetic disease that is characterized by progressive bone-marrow failure and cancer susceptibility.

HOMEOBOX

A 180-base-pair sequence that is present in many developmental genes. It encodes a DNA-binding helix–turn–helix motif, indicating that homeobox-containing gene products function as transcription factors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, C., Orkin, S. The SWI/SNF complex — chromatin and cancer. Nat Rev Cancer 4, 133–142 (2004). https://doi.org/10.1038/nrc1273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing