Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Translational approaches to improving cervical screening

Abstract

Screening programmes for cervical cancer using the current test — the Pap smear — have markedly reduced the incidence of the disease. However, an individual Pap test is of limited sensitivity and is difficult and expensive to perform. Increased understanding of the molecular pathogenesis of cervical cancer indicates that new approaches to screening might offer increased accuracy, affordability and the potential for automation. Such approaches exemplify how improved understanding of the biology of neoplasia might be translated into clinical benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre-malignant disease in cervical squamous epithelium and rationale for the cervical smear.
Figure 2: A simplified diagram illustrating cell-cycle functions of candidate biomarkers of cervical neoplasia.
Figure 3: Expression of minichromosome maintenance proteins in cervical tissue and smears.

Similar content being viewed by others

References

  1. Ferlay, J., Bray, P., Pisani, P. & Parkin, D. M. Globocan 2000. Cancer Incidence, Mortality and Prevalence Worldwide (CD-ROM, IARCPress, Lyon, 2001)

    Google Scholar 

  2. Pisani, P., Parkin, D. M., Bray, F. & Ferlay, J. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer 83, 18–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Richart, R. M. Cervical intraepithelial neoplasia. Pathol. Annu. 8, 301–328 (1973).

    CAS  PubMed  Google Scholar 

  4. Solomon, D. et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA 287, 2114–2119 (2002).

    Article  PubMed  Google Scholar 

  5. McIndoe, W. A., McLean, M. R., Jones, R. W. & Mullins, P. R. The invasive potential of carcinoma in situ of the cervix. Obstet. Gynecol. 64, 451–458 (1984).

    CAS  PubMed  Google Scholar 

  6. Johnson, E. J. & Patnick, J. Achievable standards, benchmarks for reporting, and criteria for evaluating cervical cytopathology. Second edition including revised performance indicators. Cytopathology 11, 212–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Vizcaino, A. P. et al. International trends in incidence of cervical cancer: II. Squamous-cell carcinoma. Int. J. Cancer 86, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Sankaranarayanan, R., Black, R. & Parkin, D. M. Cancer Survival in Developing Countries (IARCPress, Lyon, 1998).

    Google Scholar 

  9. Miller, A. B. et al. Report on consensus conference on cervical cancer screening and management. Int. J. Cancer 86, 440–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Nanda, K. et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. Ann. Intern. Med. 132, 810–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Moseley, R. P. & Paget, S. Liquid-based cytology: is this the way forward for cervical screening? Cytopathology 13, 71–82 (2002).

    Article  PubMed  Google Scholar 

  12. Lin, W. M. et al. Molecular Papanicolaou tests in the twenty-first century: molecular analyses with fluid-based Papanicolaou technology. Am. J. Obstet. Gynecol. 183, 39–45 (2000).

    CAS  PubMed  Google Scholar 

  13. Wilbur, D. C., Prey, M. U., Miller, W. M., Pawlick, G. F. & Colgan, T. J. The AutoPap system for primary screening in cervical cytology. Comparing the results of a prospective, intended-use study with routine manual practice. Acta Cytol. 42, 214–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Mango, L. J. & Radensky, P. W. Interactive neural-network-assisted screening. A clinical assessment. Acta Cytol. 42, 233–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Assessment of automated primary screening on PAPNET of cervical smears in the PRISMATIC trial. PRISMATIC Project Management Team. Lancet 353, 1381–1385 (1999).

  16. Huang, T. W., Lin, T. S. & Lee, J. S. Sensitivity studies of AutoPap System Location-Guided Screening of cervical-vaginal cytologic smears. Acta Cytol. 43, 363–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Grohs, D. H. Impact of automated technology on the cervical cytologic smear. A comparison of cost. Acta Cytol. 42, 165–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Cohenford, M. A. & Rigas, B. Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology. Proc. Natl Acad. Sci. USA 95, 15327–15332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fung Kee Fung, M. et al. Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening. Gynecol Oncol 66, 10–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Ramanujam, N. et al. In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence. Proc. Natl Acad. Sci. USA 91, 10193–10197 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchell, M. F. et al. Screening for squamous intraepithelial lesions with fluorescence spectroscopy. Obstet. Gynecol. 94, 889–896 (1999).

    CAS  PubMed  Google Scholar 

  22. Georgakoudi, I. et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62, 682–687 (2002).

    CAS  PubMed  Google Scholar 

  23. Georgakoudi, I. et al. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am. J. Obstet. Gynecol. 186, 374–382 (2002).

    Article  PubMed  Google Scholar 

  24. Coppleson, M., Reid, B. L., Skladnev, V. N. & Dalrymple, J. C. An electronic approach to the detection of pre-cancer and cancer of the uterine cervix: a preliminary evaluation of Polarprobe. Int. J. Gynecol. Cancer 4, 79–83 (1994).

    Article  PubMed  Google Scholar 

  25. Visual inspection with acetic acid for cervical-cancer screening: test qualities in a primary-care setting. University of Zimbabwe/JHPIEGO Cervical Cancer Project. Lancet 353, 869–873 (1999).

  26. Mandelblatt, J. S. et al. Costs and benefits of different strategies to screen for cervical cancer in less-developed countries. J. Natl Cancer. Inst. 94, 1469–1483 (2002).

    Article  PubMed  Google Scholar 

  27. Blumenthal, P. D. et al. Adjunctive testing for cervical cancer in low resource settings with visual inspection, HPV, and the Pap smear. Int. J. Gynaecol. Obstet. 72, 47–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. zur Hausen, H. in Viruses and Cancer (eds Rigby, P. W. J. & Wilkie, N. M.) 83–90 (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  29. Bosch, F. X., Lorincz, A., Munoz, N., Meijer, C. J. & Shah, K. V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55, 244–265 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. de Roda Husman, A. M. et al. Processing of long-stored archival cervical smears for human papillomavirus detection by the polymerase chain reaction. Br. J. Cancer. 72, 412–417 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wright, T. C. Jr, Denny, L., Kuhn, L., Pollack, A. & Lorincz, A. HPV DNA testing of self-collected vaginal samples compared with cytologic screening to detect cervical cancer. JAMA 283, 81–86 (2000).

    Article  PubMed  Google Scholar 

  33. de Roda Husman, A. M., Walboomers, J. M., van den Brule, A. J., Meijer, C. J. & Snijders, P. J. The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J. Gen. Virol. 76, 1057–1062 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Manos, M. M. et al. Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7, 209–214 (1989).

    CAS  Google Scholar 

  35. Kleter, B. et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J. Clin. Microbiol. 37, 2508–2517 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Clavel, C. et al. Hybrid capture II, a new sensitive test for human papillomavirus detection. Comparison with hybrid capture I and PCR results in cervical lesions. J. Clin. Pathol. 51, 737–740 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Herrington, C. S. et al. Human papillomavirus status in the prediction of high-grade cervical intraepithelial neoplasia in patients with persistent low-grade cervical cytological abnormalities. Br. J. Cancer 71, 206–209 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Clavel, C. et al. Hybrid Capture II-based human papillomavirus detection, a sensitive test to detect in routine high-grade cervical lesions: a preliminary study on 1518 women. Br. J. Cancer 80, 1306–1311 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ho, G. Y., Bierman, R., Beardsley, L., Chang, C. J. & Burk, R. D. Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 338, 423–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Schiffman, M. et al. HPV DNA testing in cervical cancer screening: results from women in a high-risk province of Costa Rica. JAMA 283, 87–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Cuzick, J. et al. A systematic review of the role of human papilloma virus (HPV) testing within a cervical screening programme: summary and conclusions. Br. J. Cancer 83, 561–565 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Cuzick, J. et al. A systematic review of the role of human papillomavirus testing within a cervical screening programme. Health Technol. Assess. 3, 1–196 (1999).

    Article  Google Scholar 

  43. Schlecht, N. F. et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA 286, 3106–3114 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kjaer, S. K. et al. Type specific persistence of high risk human papillomavirus (HPV) as indicator of high grade cervical squamous intraepithelial lesions in young women: population based prospective follow up study. BMJ 325, 572 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Josefsson, A. M. et al. Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet 355, 2189–2193 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Ylitalo, N. et al. Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: a nested case-control study. Lancet 355, 2194–2198 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Castle, P. E. et al. Absolute risk of a subsequent abnormal pap among oncogenic human papillomavirus DNA-positive, cytologically negative women. Cancer 95, 2145–2151 (2002).

    Article  PubMed  Google Scholar 

  48. Lorincz, A. T. et al. Viral load of human papillomavirus and risk of CIN3 or cervical cancer. Lancet 360, 228–229 (2002).

    Article  PubMed  Google Scholar 

  49. Bory, J. P. et al. Recurrent human papillomavirus infection detected with the hybrid capture II assay selects women with normal cervical smears at risk for developing high grade cervical lesions: a longitudinal study of 3,091 women. Int. J. Cancer 102, 519–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Wang-Johanning, F., Lu, D. W., Wang, Y., Johnson, M. R. & Johanning, G. L. Quantitation of human papillomavirus 16 E6 and E7 DNA and RNA in residual material from ThinPrep Papanicolaou tests using real-time polymerase chain reaction analysis. Cancer 94, 2199–2210 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Human papillomavirus testing for triage of women with cytologic evidence of low-grade squamous intraepithelial lesions: baseline data from a randomized trial. The Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (ALTS) Group. J Natl Cancer Inst 92, 397–402 (2000).

  52. Little, J. Human papillomavirus testing. Effectiveness of testing for high risk HPV for triage of low grade abnormal smears is being assessed in TOMBOLA trial. BMJ 323, 109 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Cuzick, J. et al. in 20th International Papillomavirus Conference 103 (Colloquium, Paris, 2002). <http://www.colloquium.fr/hpv2002/pdf/0115-0117.pdf>.

    Google Scholar 

  54. Manos, M. M. et al. Identifying women with cervical neoplasia: using human papillomavirus DNA testing for equivocal Papanicolaou results. JAMA 281, 1605–1610 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Solomon, D., Schiffman, M. & Tarone, R. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: baseline results from a randomized trial. J. Natl Cancer Inst. 93, 293–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Rebello, G., Hallam, N., Smart, G., Farquharson, D. & McCafferty, J. Human papillomavirus testing and the management of women with mildly abnormal cervical smears: an observational study. BMJ 322, 893–894 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Harris, J. E. Re: Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: baseline results from a randomized trial. J. Natl Cancer Inst. 93, 950–951; discussion 951–952 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Sherman, M. E., Schiffman, M. & Cox, J. T. Effects of age and human papilloma viral load on colposcopy triage: data from the randomized Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesion Triage Study (ALTS). J. Natl Cancer Inst. 94, 102–107 (2002).

    Article  PubMed  Google Scholar 

  59. Tendler, A., Kaufman, H. L. & Kadish, A. S. Increased carcinoembryonic antigen expression in cervical intraepithelial neoplasia grade 3 and in cervical squamous cell carcinoma. Hum. Pathol. 31, 1357–1362 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Liao, S. Y. & Stanbridge, E. J. Expression of the MN antigen in cervical papanicolaou smears is an early diagnostic biomarker of cervical dysplasia. Cancer Epidemiol. Biomarkers Prev. 5, 549–557 (1996).

    CAS  PubMed  Google Scholar 

  61. Resnick, M. et al. Viral and histopathologic correlates of MN and MIB-1 expression in cervical intraepithelial neoplasia. Hum. Pathol. 27, 234–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ohtani, K. et al. Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F. Oncogene 18, 2299–2309 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, H. H. et al. Regulation of cyclin D1, DNA topoisomerase I, and proliferating cell nuclear antigen promoters during the cell cycle. Gene Expr. 4, 95–109 (1995).

    PubMed  Google Scholar 

  65. Khleif, S. N. et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc. Natl Acad. Sci. USA 93, 4350–4354 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, M., Lee, B. H. & Mathews, M. B. Involvement of RFX1 protein in the regulation of the human proliferating cell nuclear antigen promoter. J. Biol. Chem. 274, 15433–15439 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Chinery, R. et al. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPβ. Nature Med. 3, 1233–1241 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Nuovo, G. J., Plaia, T. W., Belinsky, S. A., Baylin, S. B. & Herman, J. G. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc. Natl Acad. Sci. USA 96, 12754–12759 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong, S. M., Kim, H. S., Rha, S. H. & Sidransky, D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin. Cancer Res. 7, 1982–1986 (2001).

    CAS  PubMed  Google Scholar 

  70. Tommasi, S. & Pfeifer, G. P. In vivo structure of two divergent promoters at the human PCNA locus. Synthesis of antisense RNA and S phase-dependent binding of E2F complexes in intron 1. J. Biol. Chem. 274, 27829–27838 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Noya, F. et al. The promoter of the human proliferating cell nuclear antigen gene is not sufficient for cell cycle-dependent regulation in organotypic cultures of keratinocytes. J. Biol. Chem. 277, 17271–17280 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Noya, F., Chien, W. M., Broker, T. R. & Chow, L. T. p21cip1 degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7. J. Virol. 75, 6121–6134 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ohtani, K., DeGregori, J. & Nevins, J. R. Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl Acad. Sci. USA 92, 12146–12150 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hiyama, H., Iavarone, A. & Reeves, S. A. Regulation of the CDK inhibitor p21 gene during cell cycle progression is under the control of the transcription factor E2F. Oncogene 16, 1513–1523 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Funk, J. O. et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090–2100 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Zerfass-Thome, K. et al. Inactivation of the CDK inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323–2330 (1996).

    CAS  PubMed  Google Scholar 

  77. Keating, J. T. et al. Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am. J. Surg. Pathol. 25, 884–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Weaver, E. J., Kovatich, A. J. & Bibbo, M. Cyclin E expression and early cervical neoplasia in ThinPrep specimens. A feasibility study. Acta Cytol. 44, 301–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Werness, B. A., Wang, H. Q., Chance, J. & Goldstein, D. J. p53-independent expression of p21waf1/cip1 in preinvasive and invasive squamous neoplasms of the uterine cervix. Mod. Pathol. 10, 578–584 (1997).

    CAS  PubMed  Google Scholar 

  80. Skomedal, H., Kristensen, G. B., Lie, A. K. & Holm, R. Aberrant expression of the cell cycle associated proteins TP53, MDM2, p21, p27, cdk4, cyclin D1, RB, and EGFR in cervical carcinomas. Gynecol. Oncol. 73, 223–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Huang, L. W., Chou, Y. Y., Chao, S. L., Chen, T. J. & Lee, T. T. p53 and p21 expression in precancerous lesions and carcinomas of the uterine cervix: overexpression of p53 predicts poor disease outcome. Gynecol. Oncol. 83, 348–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Zehbe, I. et al. Overriding of cyclin-dependent kinase inhibitors by high and low risk human papillomavirus types: evidence for an in vivo role in cervical lesions. Oncogene 18, 2201–2211 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Virmani, A. K. et al. Aberrant methylation during cervical carcinogenesis. Clin. Cancer Res. 7, 584–589 (2001).

    CAS  PubMed  Google Scholar 

  84. Kim, Y. T., Cho, N. H., Park, S. W. & Kim, J. W. Underexpression of cyclin-dependent kinase (CDK) inhibitors in cervical carcinoma. Gynecol. Oncol. 71, 38–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Sano, T., Oyama, T., Kashiwabara, K., Fukuda, T. & Nakajima, T. Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am. J. Pathol. 153, 1741–1748 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Klaes, R. et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int. J. Cancer 92, 276–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Nielsen, G. P. et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest. 79, 1137–1143 (1999).

    CAS  PubMed  Google Scholar 

  88. Bibbo, M., Klump, W. J., DeCecco, J. & Kovatich, A. J. Procedure for immunocytochemical detection of P16INK4A antigen in thin-layer, liquid-based specimens. Acta Cytol. 46, 25–29 (2002).

    Article  PubMed  Google Scholar 

  89. Bravo, R., Frank, R., Blundell, P. A. & Macdonald-Bravo, H. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326, 515–517 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Fuss, J. & Linn, S. Human DNA polymerase epsilon colocalizes with proliferating cell nuclear antigen and DNA replication late, but not early, in S phase. J. Biol. Chem. 277, 8658–8666 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Celis, J. E. & Celis, A. Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc. Natl Acad. Sci. USA 82, 3262–3266 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Shurbaji, M. S., Brooks, S. K. & Thurmond, T. S. Proliferating cell nuclear antigen immunoreactivity in cervical intraepithelial neoplasia and benign cervical epithelium. Am. J. Clin. Pathol. 100, 22–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Demeter, L. M., Stoler, M. H., Broker, T. R. & Chow, L. T. Induction of proliferating cell nuclear antigen in differentiated keratinocytes of human papillomavirus-infected lesions. Hum. Pathol. 25, 343–348 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Dollard, S. C. et al. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev. 6, 1131–1142 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Gerdes, J. et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715 (1984).

    CAS  PubMed  Google Scholar 

  96. Konishi, I. et al. Immunohistochemical analysis of estrogen receptors, progesterone receptors, Ki-67 antigen, and human papillomavirus DNA in normal and neoplastic epithelium of the uterine cervix. Cancer 68, 1340–1350 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Kruse, A. J. et al. Ki-67 immunoquantitation in cervical intraepithelial neoplasia (CIN): a sensitive marker for grading. J. Pathol. 193, 48–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Mittal, K. Utility of proliferation-associated marker MIB-1 in evaluating lesions of the uterine cervix. Adv. Anat. Pathol. 6, 177–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Kruse, A. J., Baak, J. P., de Bruin, P. C., van de Goot, F. R. & Kurten, N. Relationship between the presence of oncogenic HPV DNA assessed by polymerase chain reaction and Ki-67 immunoquantitative features in cervical intraepithelial neoplasia. J. Pathol. 195, 557–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Bulten, J. et al. Decreased expression of Ki-67 in atrophic cervical epithelium of post-menopausal women. J. Pathol. 190, 545–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Pirog, E. C. et al. Proliferative activity of benign and neoplastic endocervical epithelium and correlation with HPV DNA detection. Int. J. Gynecol. Pathol. 21, 22–26 (2002).

    Article  PubMed  Google Scholar 

  102. van Hoeven, K. H., Kovatich, A. J., Oliver, R. E., Nobel, M. & Dunton, C. J. Protocol for immunocytochemical detection of SIL in cervical smears using MIB-1 antibody to Ki-67. Mod. Pathol. 9, 407–412 (1996).

    CAS  PubMed  Google Scholar 

  103. Dunton, C. J. et al. Ki-67 antigen staining as an adjunct to identifying cervical intraepithelial neoplasia. Gynecol. Oncol. 64, 451–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Zeng, Z., Del, P. G., Cohen, J. M. & Mittal, K. MIB-1 expression in cervical Papanicolaou tests correlates with dysplasia in subsequent cervical biopsies. Appl. Immunohistochem. Mol. Morphol. 10, 15–19 (2002).

    PubMed  Google Scholar 

  105. Boon, M. E., Kleinschmidt-Guy, E. D., Wijsman-Grootendorst, A. & Hoogeveen, M. M. Upgrading unsatisfactory cervical smears with the MiB-1 method. Diag. Cytopathol. 15, 270–276 (1996).

    Article  CAS  Google Scholar 

  106. Lei, M. & Tye, B. K. Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell Sci. 114, 1447–1454 (2001).

    CAS  PubMed  Google Scholar 

  107. Laskey, R. A. & Madine, M. A. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4, 26–30 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Musahl, C., Holthoff, H. P., Lesch, R. & Knippers, R. Stability of the replicative Mcm3 protein in proliferating and differentiating human cells. Exp. Cell. Res. 241, 260–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Freeman, A. et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin. Cancer Res. 5, 2121–2132 (1999).

    CAS  PubMed  Google Scholar 

  110. Williams, G. H. et al. Improved cervical smear assessment using antibodies against proteins that regulate DNA replication. Proc. Natl Acad. Sci. USA 95, 14932–14937 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stoeber, K. et al. Immunoassay for urothelial cancers that detects DNA replication protein Mcm5 in urine. Lancet 354, 1524–1525 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Davies, R. J. et al. Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet 359, 1917–1919 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Takakura, M., Kyo, S., Kanaya, T., Tanaka, M. & Inoue, M. Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res. 58, 1558–1561 (1998).

    CAS  PubMed  Google Scholar 

  116. Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Baege, A. C., Berger, A., Schlegel, R. & Veldman, T. Cervical epithelial cells transduced with the papillomavirus E6/E7 oncogenes maintain stable levels of oncoprotein expression but exhibit progressive, major increases in hTERT gene expression and telomerase activity. Am. J. Pathol. 160, 1251–1257 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Nowak, J. A. Telomerase, cervical cancer, and human papillomavirus. Clin. Lab. Med. 20, 369–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Iwasaka, T. et al. Telomerase activation in cervical neoplasia. Obstet. Gynecol. 91, 260–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Hiyama, K. et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711–3715 (1995).

    CAS  PubMed  Google Scholar 

  122. Yasumoto, S. et al. Telomerase activity in normal human epithelial cells. Oncogene 13, 433–439 (1996).

    CAS  PubMed  Google Scholar 

  123. Mutirangura, A. et al. Telomerase activity and human papillomavirus in malignant, premalignant and benign cervical lesions. Br. J. Cancer 78, 933–939 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Saretzki, G. et al. Telomerase activity in cervical smears. Anal. Cell. Pathol. 23, 39–43 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. ChangChien, C. C., Lin, H., Leung, S. W., Hsu, C. Y. & Cho, C. L. Effect of acetic acid on telomerase activity in cervical intraepithelial neoplasia. Gynecol. Oncol. 71, 99–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Kyo, S., Takakura, M., Tanaka, M., Kanaya, T. & Inoue, M. Telomerase activity in cervical cancer is quantitatively distinct from that in its precursor lesions. Int. J. Cancer 79, 66–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Lazo, P. A. The molecular genetics of cervical carcinoma. Br. J. Cancer 80, 2008–2018 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Larson, A. A., Liao, S. Y., Stanbridge, E. J., Cavenee, W. K. & Hampton, G. M. Genetic alterations accumulate during cervical tumorigenesis and indicate a common origin for multifocal lesions. Cancer Res. 57, 4171–4176 (1997).

    CAS  PubMed  Google Scholar 

  129. Chang, C. L. et al. Microsatellite alterations in exfoliated cervical epithelia deoxyribonucleic acid as a marker for high-grade dysplasia. Am. J. Obstet. Gynecol. 185, 108–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Rha, S. H., Dong, S. M., Jen, J., Nicol, T. & Sidransky, D. Molecular detection of cervical intraepithelial neoplasia and cervical carcinoma by microsatellite analysis of Papanicolaou smears. Int. J. Cancer 93, 424–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, Y. et al. Microsatellite-based cancer detection using capillary array electrophoresis and energy-transfer fluorescent primers. Electrophoresis 18, 1742–1749 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Klaes, R. et al. Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res. 59, 6132–6136 (1999).

    CAS  PubMed  Google Scholar 

  133. Thorland, E. C. et al. Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res. 60, 5916–5921 (2000).

    CAS  PubMed  Google Scholar 

  134. Kalantari, M., Blennow, E., Hagmar, B. & Johansson, B. Physical state of HPV16 and chromosomal mapping of the integrated form in cervical carcinomas. Diag. Mol. Pathol. 10, 46–54 (2001).

    Article  CAS  Google Scholar 

  135. Luft, F. et al. Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells. Int. J. Cancer 92, 9–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Nagao, S. et al. Rapid and sensitive detection of physical status of human papillomavirus type 16 DNA by quantitative real-time PCR. J. Clin. Microbiol. 40, 863–867 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Chang, Y. E. & Laimins, L. A. Interferon-inducible genes are major targets of human papillomavirus type 31: insights from microarray analysis. Dis. Markers 17, 139–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Alazawi, W. et al. Changes in cervical keratinocyte gene expression associated with integration of human papillomavirus 16. Cancer Res. 62, 6959–6965 (2002).

    CAS  PubMed  Google Scholar 

  139. Coverley, D., Pelizon, C., Trewick, S. & Laskey, R. A. Chromatin-bound Cdc6 persists in S and G2 phases in human cells, while soluble Cdc6 is destroyed in a cyclin A-cdk2 dependent process. J. Cell Sci. 113, 1929–1938 (2000).

    CAS  PubMed  Google Scholar 

  140. Mills, A. D., Coleman, N., Morris, L. S. & Laskey, R. A. Detection of S-phase cells in tissue sections by in situ DNA replication. Nature Cell. Biol. 2, 244–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, S. S. et al. Comprehensive analysis of human leukocyte antigen class I alleles and cervical neoplasia in 3 epidemiologic studies. J. Infect. Dis. 186, 598–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Ghaderi, M. et al. Risk of invasive cervical cancer associated with polymorphic HLA DR/DQ haplotypes. Int. J. Cancer 100, 698–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. van den Akker-van Marle, M. E., van Ballegooijen, M., van Oortmarssen, G. J., Boer, R. & Habbema, J. D. Cost-effectiveness of cervical cancer screening: comparison of screening policies. J. Natl Cancer. Inst. 94, 193–204 (2002).

    Article  PubMed  Google Scholar 

  144. Koutsky, L. A. et al. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347, 1645–1651 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Wilson, J. M. G. & Junger, G. in Public Health Pap 26–39 (WHO, Geneva, 1968).

    Google Scholar 

  146. Michalas, S. P. The Pap test: George N. Papanicolaou (1883-1962). A screening test for the prevention of cancer of uterine cervix. Eur. J. Obstet. Gynecol. Reprod. Biol. 90, 135–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Papanicolaou, G. N. in Procedings of the Third Race Betterment Conference 528–534 (Race Betterment Foundation, Battle Creek, Michigan, 1928).

    Google Scholar 

  148. Papanicolaou, G. N. & Trout, H. F. The diagnostic value of vaginal smears in carcinoma of the uterus. Am. J. Obstet. Gynecol. 42, 193–206 (1941).

    Article  Google Scholar 

  149. Hutchinson, M. L. et al. Homogeneous sampling accounts for the increased diagnostic accuracy using the ThinPrep Processor. Am. J. Clin. Pathol. 101, 215–219 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Bergeron, C., Debaque, H., Ayivi, J., Amaizo, S. & Fagnani, F. Cervical smear histories of 585 women with biopsy-proven carcinoma in situ. Acta Cytol. 41, 1676–1680 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Llewellyn, H. Observer variation, dysplasia grading, and HPV typing: a review. Am. J. Clin. Pathol. 114, S21–S35 (2000).

    PubMed  Google Scholar 

  152. Rogstad, K. E. The psychological impact of abnormal cytology and colposcopy. Br. J. Obstet. Gynecol. 109, 364–368 (2002).

    Article  CAS  Google Scholar 

  153. Nasiell, K., Roger, V. & Nasiell, M. Behavior of mild cervical dysplasia during long-term follow-up. Obstet. Gynecol. 67, 665–669 (1986).

    Article  CAS  PubMed  Google Scholar 

  154. Qualifications and Training for Non-Medical Laboratory Staff in the UK Cervical Screening Programmes (NHSCSP Publications, Sheffield, 2000).

  155. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. Zimmermann, H., Degenkolbe, R., Bernard, H. U. & O'Connor, M. J. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73, 6209–6219 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Yam, C. H., Fung, T. K. & Poon, R. Y. Cyclin A in cell cycle control and cancer. Cell. Mol. Life Sci. 59, 1317–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Thomas, M. & Banks, L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17, 2943–2954 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Antinore, M. J., Birrer, M. J., Patel, D., Nader, L. & McCance, D. J. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J. 15, 1950–1960 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Zeng, M. et al. Human papilloma virus 16 E6 oncoprotein inhibits retinoic X receptor-mediated transactivation by targeting human ADA3 coactivator. J. Biol. Chem. 277, 45611–45618 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Duensing, S., Duensing, A., Crum, C. P. & Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360 (2001).

    CAS  PubMed  Google Scholar 

  162. Livingstone, L. R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologise to colleagues whose work we were unable to cite due to space constraints. We thank the American College of Obstetricians and Gynecologists for providing the picture of George N. Papanicolaou. P. B. is funded by Addenbrooke's Charities. N. C. and R. L. are supported by the Medical Research Council and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Coleman.

Related links

Related links

DATABASES

Cancer.gov

cervical cancer

LocusLink

cyclin E

DNA polymerase-δ

DNA polymerase-ε

INK4A

Ki-67

KIP1

MCM2

MCM3

MCM4

MCM5

MCM6

MCM7

MN antigen

p107

p130

PCNA

RB

TERT

WAF1

FURTHER INFORMATION

American Society for Colposcopy and Cervical Pathology

British Society for Clinical Cytology

Cancer Mondial

National Cancer Institute Surveillance, Epidemiology and End Results

NHS Cervical Screening Programme

Papanicolaou Society of Cytopathology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, P., Laskey, R. & Coleman, N. Translational approaches to improving cervical screening. Nat Rev Cancer 3, 217–226 (2003). https://doi.org/10.1038/nrc1010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing