Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oesophageal adenocarcinoma and gastric cancer: should we mind the gap?

Key Points

  • There has been a dramatic increase in the incidence of oesophageal adenocarcinoma (OAC) and intestinal-type gastric cancer (GC) arising near the gastric–oesophageal junction (GOJ).

  • OAC and intestinal-type GC share many common molecular features.

  • OAC and intestinal-type GC are derived from the inflammation–metaplasia cascade that occurs in the oesophageal epithelium in OAC and in the gastric epithelium in intestinal-type GC.

  • Barrett oesophagus and OAC may originate from gastric stem cells derived from the cardia.

Abstract

Over recent decades we have witnessed a shift in the anatomical distribution of gastric cancer (GC), which increasingly originates from the proximal stomach near the junction with the oesophagus. In parallel, there has been a dramatic rise in the incidence of oesophageal adenocarcinoma (OAC) in the lower oesophagus, which is associated with antecedent Barrett oesophagus (BO). In this context, there has been uncertainty regarding the characterization of adenocarcinomas spanning the area from the lower oesophagus to the distal stomach. Most relevant to this discussion is the distinction, if any, between OAC and intestinal-type GC of the proximal stomach. It is therefore timely to review our current understanding of OAC and intestinal-type GC, integrating advances from cell-of-origin studies and comprehensive genomic alteration analyses, ultimately enabling better insight into the relationship between these two cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic epidemiology of gastric cancer and oesophageal adenocarcinoma.
Figure 2: Sequential steps in oesophageal and gastric carcinogenesis.
Figure 3: Stem cells in the oesophagus and stomach, and origins of Barrett oesophagus and gastric cancer.
Figure 4: Molecular subtypes of gastric cancer and oesophageal adenocarcinoma.

Similar content being viewed by others

References

  1. Wingo, P. A. et al. Long-term trends in cancer mortality in the United States, 1930–1998. Cancer 97, 3133–3275 (2003).

    Article  PubMed  Google Scholar 

  2. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. Umar, S. B. & Fleischer, S. D. Esophageal cancer: epidemiology, pathogenesis and prevention. Nat. Rev. Gastroenterol. Hepatol. 5, 517–526 (2008).

    Article  Google Scholar 

  4. Brown, L. M., Devesa, S. S. & Chow, W. H. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J. Natl Cancer Inst. 100, 1184–1187 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Demeester, S. R. Epidemiology and biology of esophageal cancer. Gastrointest. Cancer Res. 3, S2–S5 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Rustgi, A. K. & El-Serag, H. B. Esophageal carcinoma. N. Engl. J. Med. 371, 2499–2509 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Barrett, N. R. Chronic peptic ulcer of the oesophagus and 'oesophagitis'. Br. J. Surg. 38, 175–182 (1950).

    Article  CAS  PubMed  Google Scholar 

  8. Falk, G. W. et al. Barrett's esophagus: prevalence–incidence and etiology–origins. Ann. NY Acad. Sci. 1232, 1–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Devesa, S. S. & Fraumeni, J. F. Jr. The rising incidence of gastric cardia cancer. J. Natl Cancer Inst. 91, 747–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Deans, C. et al. Cancer of the gastric cardia is rising in incidence in an Asian population and is associated with adverse outcome. World J. Surg. 35, 617–624 (2011).

    Article  PubMed  Google Scholar 

  11. Sons, H. U. & Borchard, F. Cancer of the distal esophagus and cardia. Incidence, tumorous infiltration, and metastatic spread. Ann. Surg. 203, 188–195 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blot, W. J., Devesa, S. S., Kneller, R. W. & Fraumeni, J. F. Jr. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 265, 1287–1289 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Correa, P., Haenszel, W., Cuello, C., Tannenbaum, S. & Archer, M. A model for gastric cancer epidemiology. Lancet 2, 58–60 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Bertuccio, P. et al. Recent patterns in gastric cancer: a global overview. Int. J. Cancer 125, 666–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Wadhwa, R. et al. Gastric cancer-molecular and clinical dimensions. Nat. Rev. Clin. Oncol. 10, 643–655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bosetti, C. et al. Trends in cancer mortality in the Americas, 1970–2000. Ann. Oncol. 16, 489–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Lavery, D. L. et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands. Gut 63, 1854–1863 (2014). Using detailed histopathological techniques, the authors reported the similarity between BO glands and gastric glands.

    Article  CAS  PubMed  Google Scholar 

  19. Mesquita, P. et al. Metaplasia—a transdifferentiation process that facilitates cancer development: the model of gastric intestinal metaplasia. Crit. Rev. Oncog. 12, 3–26 (2006).

    Article  PubMed  Google Scholar 

  20. Paull, A. et al. The histologic spectrum of Barrett's esophagus. N. Engl. J. Med. 295, 476–480 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. Mutoh, H. et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut 53, 1416–1423 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silberg, D. G. et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113, 478–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Vallbohmer, D. et al. Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis. Esophagus 19, 260–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wong, N. A. et al. CDX1 is an important molecular mediator of Barrett's metaplasia. Proc. Natl Acad. Sci. USA 102, 7565–7570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parsonnet, J. et al. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, J. Q., Sridhar, S., Chen, Y. & Hunt, R. H. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114, 1169–1179 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

  28. Carneiro, F. et al. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J. Pathol. 203, 681–687 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Blaser, M. J. Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. J. Infect. Dis. 179, 1523–1530 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Hansen, S., Melby, K. K., Aase, S., Jellum, E. & Vollset, S. E. Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer. A nested case-control study. Scand. J. Gastroenterol. 34, 353–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Chow, W. H. et al. An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res. 58, 588–590 (1998).

    CAS  PubMed  Google Scholar 

  32. Wu, I. C. et al. Association between Helicobacter pylori seropositivity and digestive tract cancers. World J. Gastroenterol. 15, 5465–5471 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bornschein, J. et al. H. pylori infection is a key risk factor for proximal gastric cancer. Dig. Dis. Sci. 55, 3124–3131 (2010).

    Article  PubMed  Google Scholar 

  34. Morales, T. G., Sampliner, R. E. & Bhattacharyya, A. Intestinal metaplasia of the gastric cardia. Am. J. Gastroenterol. 92, 414–418 (1997).

    CAS  PubMed  Google Scholar 

  35. Hackelsberger, A. et al. Prevalence and pattern of Helicobacter pylori gastritis in the gastric cardia. Am. J. Gastroenterol. 92, 2220–2224 (1997).

    CAS  PubMed  Google Scholar 

  36. Goldblum, J. R. et al. Inflammation and intestinal metaplasia of the gastric cardia: the role of gastroesophageal reflux and H. pylori infection. Gastroenterology 114, 633–639 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Morini, S. et al. Gastric cardia inflammation: role of Helicobacter pylori infection and symptoms of gastroesophageal reflux disease. Am. J. Gastroenterol. 96, 2337–2340 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012). In this work the authors developed a mouse model of BO, and demonstrated that BO is derived from gastric cardia stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Merry, A. H., Schouten, L. J., Goldbohm, R. A. & van den Brandt, P. A. Body mass index, height and risk of adenocarcinoma of the oesophagus and gastric cardia: a prospective cohort study. Gut 56, 1503–1511 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lagergren, J., Bergstrom, R. & Nyren, O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann. Intern. Med. 130, 883–890 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Hampel, H., Abraham, N. S. & El-Serag, H. B. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann. Intern. Med. 143, 199–211 (2005).

    Article  PubMed  Google Scholar 

  42. Thrift, A. P. et al. Obesity and risk of esophageal adenocarcinoma and Barrett's esophagus: a Mendelian randomization study. J. Natl Cancer Inst. 106, dju252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kendall, B. J. et al. The risk of Barrett's esophagus associated with abdominal obesity in males and females. Int. J. Cancer 132, 2192–2199 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, P. et al. Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. Eur. J. Cancer 45, 2867–2873 (2009).

    Article  PubMed  Google Scholar 

  45. Lin, X. J. et al. Body mass index and risk of gastric cancer: a meta-analysis. Jpn J. Clin. Oncol. 44, 783–791 (2014).

    Article  PubMed  Google Scholar 

  46. Chen, Y. et al. Body mass index and risk of gastric cancer: a meta-analysis of a population with more than ten million from 24 prospective studies. Cancer Epidemiol. Biomarkers Prev. 22, 1395–1408 (2013).

    Article  PubMed  Google Scholar 

  47. Ericksen, R. E. et al. Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response. Gut 63, 385–394 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Chandar, A. K. et al. Association of serum levels of adipokines and insulin with risk of Barrett's esophagus: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 13, 2241–2255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. El-Omar, E. M. et al. The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature 412, 99 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. El-Omar, E. M. et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124, 1193–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Persson, C., Canedo, P., Machado, J. C., El-Omar, E. M. & Forman, D. Polymorphisms in inflammatory response genes and their association with gastric cancer: a HuGE systematic review and meta-analyses. Am. J. Epidemiol. 173, 259–270 (2011).

    Article  PubMed  Google Scholar 

  52. Furuta, T. et al. Interleukin 1β polymorphisms increase risk of hypochlorhydria and atrophic gastritis and reduce risk of duodenal ulcer recurrence in Japan. Gastroenterology 123, 92–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Tu, S. et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine, D. M. et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus. Nat. Genet. 45, 1487–1493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palles, C. et al. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus. Gastroenterology 148, 367–378 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Shibata, W. et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut 62, 192–200 (2013).

    Article  PubMed  Google Scholar 

  57. Okumura, T. et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 70, 8435–8445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hayakawa, Y. et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell 28, 800–814 (2015). This study revealed that gastric isthmus stem cells in the corpus can give rise to intestinal-type and diffuse-type cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, C. M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl Med. 6, 250ra115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poulsen, A. H. et al. Proton pump inhibitors and risk of gastric cancer: a population-based cohort study. Br. J. Cancer 100, 1503–1507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ahn, J. S., Eom, C. S., Jeon, C. Y. & Park, S. M. Acid suppressive drugs and gastric cancer: a meta-analysis of observational studies. World J. Gastroenterol. 19, 2560–2568 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Malesci, A. et al. Partial regression of Barrett's esophagus by long-term therapy with high-dose omeprazole. Gastrointest. Endosc. 44, 700–705 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Gore, S. et al. Regression of columnar lined (Barrett's) oesophagus with continuous omeprazole therapy. Aliment. Pharmacol. Ther. 7, 623–628 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Peters, F. T. et al. Endoscopic regression of Barrett's oesophagus during omeprazole treatment; a randomised double blind study. Gut 45, 489–494 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hvid-Jensen, F., Pedersen, L., Funch-Jensen, P. & Drewes, A. M. Proton pump inhibitor use may not prevent high-grade dysplasia and oesophageal adenocarcinoma in Barrett's oesophagus: a nationwide study of 9883 patients. Aliment. Pharmacol. Ther. 39, 984–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Singh, S., Garg, S. K., Singh, P. P., Iyer, P. G. & El-Serag, H. B. Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett's oesophagus: a systematic review and meta-analysis. Gut 63, 1229–1237 (2014).

    Article  PubMed  Google Scholar 

  68. Obszynska, J. A. et al. Long-term proton pump induced hypergastrinaemia does induce lineage-specific restitution but not clonal expansion in benign Barrett's oesophagus in vivo. Gut 59, 156–163 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lundell, L., Vieth, M., Gibson, F., Nagy, P. & Kahrilas, P. J. Systematic review: the effects of long-term proton pump inhibitor use on serum gastrin levels and gastric histology. Aliment. Pharmacol. Ther. 42, 649–663 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Haigh, C. R. et al. Gastrin induces proliferation in Barrett's metaplasia through activation of the CCK2 receptor. Gastroenterology 124, 615–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Hoffmann, K. M., Gibril, F., Entsuah, L. K., Serrano, J. & Jensen, R. T. Patients with multiple endocrine neoplasia type 1 with gastrinomas have an increased risk of severe esophageal disease including stricture and the premalignant condition, Barrett's esophagus. J. Clin. Endocrinol. Metab. 91, 204–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, J. S. et al. Elevated serum gastrin is associated with a history of advanced neoplasia in Barrett's esophagus. Am. J. Gastroenterol. 105, 1039–1045 (2010).

    Article  PubMed  Google Scholar 

  73. Green, D. A. et al. Correlation between serum gastrin and cellular proliferation in Barrett's esophagus. Therap. Adv. Gastroenterol. 4, 89–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zavros, Y. et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 24, 2354–2366 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Tomita, H. et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 140, 879–891 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Sharma, P. et al. A critical review of the diagnosis and management of Barrett's esophagus: the AGA Chicago Workshop. Gastroenterology 127, 310–330 (2004).

    Article  PubMed  Google Scholar 

  77. Robertson, E. V. et al. Central obesity in asymptomatic volunteers is associated with increased intrasphincteric acid reflux and lengthening of the cardiac mucosa. Gastroenterology 145, 730–739 (2013).

    Article  PubMed  Google Scholar 

  78. Cassaro, M. et al. Topographic patterns of intestinal metaplasia and gastric cancer. Am. J. Gastroenterol. 95, 1431–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Chandrasoma, P. T., Der, R., Ma, Y., Dalton, P. & Taira, M. Histology of the gastroesophageal junction: an autopsy study. Am. J. Surg. Pathol. 24, 402–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Genta, R. M., Huberman, R. M. & Graham, D. Y. The gastric cardia in Helicobacter pylori infection. Hum. Pathol. 25, 915–919 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Chandrasoma, P. T. et al. Distribution and significance of epithelial types in columnar-lined esophagus. Am. J. Surg. Pathol. 25, 1188–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. McDonald, S. A. et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134, 500–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Leedham, S. J. et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's oesophagus. Gut 57, 1041–1048 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: 16 lesions are selected in Barrett's esophagus. Cancer Res. 64, 3414–3427 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Nicholson, A. M. et al. Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut 61, 1380–1389 (2012). With the use of human tissue, the authors reported that BO glands expand clonally and multiple clones from multiple stem cells are involved in BO lesions.

    Article  CAS  PubMed  Google Scholar 

  86. Paulson, T. G. et al. Neosquamous epithelium does not typically arise from Barrett's epithelium. Clin. Cancer Res. 12, 1701–1706 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Nam, K. T. et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology 139, 2028–2037 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Westphalen, C. B. et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Invest. 124, 1283–1295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009). In this work, the authors demonstrated that LGR5+ intestinal and colon stem cells are an origin of intestinal cancers in mice.

    Article  CAS  PubMed  Google Scholar 

  92. Asfaha, S. et al. Krt19+/Lgr5 cells are radioresistant cancer-initiating stem cells in the colon and intestine. Cell Stem Cell 16, 627–638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010). This study identified LGR5+ gastric stem cells at the base of antral and cardia glands in mice, and showed that they give rise to neoplasia.

    Article  CAS  PubMed  Google Scholar 

  94. Mills, J. C. & Shivdasani, R. A. Gastric epithelial stem cells. Gastroenterology 140, 412–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Goldenring, J. R., Nam, K. T., Wang, T. C., Mills, J. C. & Wright, N. A. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology 138, 2207–2210 (2010).

    Article  PubMed  Google Scholar 

  96. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Arnold, K. et al. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hayakawa, Y. et al. CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut 64, 544–553 (2014). This study identified CCKBR+ stem cells in mouse gastric antrum, and described progastrin-mediated interconversion between CCKBR+ and LGR5+ stem cells.

    Article  CAS  PubMed  Google Scholar 

  100. Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl Acad. Sci. USA 109, 466–471 (2012).

    Article  PubMed  Google Scholar 

  101. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Karam, S. M. & Leblond, C. P. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat. Rec. 236, 259–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, E. R. & Leblond, C. P. Dynamic histology of the antral epithelium in the mouse stomach: II. Ultrastructure and renewal of isthmal cells. Am. J. Anat. 172, 205–224 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Nam, K. T. et al. Spasmolytic polypeptide-expressing metaplasia (SPEM) in the gastric oxyntic mucosa does not arise from Lgr5-expressing cells. Gut 61, 1678–1685 (2012).

    Article  PubMed  Google Scholar 

  106. Stange, D. E. et al. Differentiated troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Choi, E., Hendley, A. M., Bailey, J. M., Leach, S. D. & Goldenring, J. R. Expression of activated Ras in gastric chief cells of mice leads to the full spectrum of metaplastic lineage transitions. Gastroenterology 150, 918–930 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Leushacke, M., Ng, A., Galle, J., Loeffler, M. & Barker, N. Lgr5+ gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. Cell Rep. 5, 349–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Jang, B. G., Lee, B. L. & Kim, W. H. Distribution of LGR5+ cells and associated implications during the early stage of gastric tumorigenesis. PLoS ONE 8, e82390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Simon, E. et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression. PLoS ONE 7, e35486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Becker, L., Huang, Q. & Mashimo, H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Sci. World J. 8, 1168–1176 (2008).

    Article  CAS  Google Scholar 

  112. Sigal, M. et al. Helicobacter pylori activates and expands Lgr5+ stem cells through direct colonization of the gastric glands. Gastroenterology 148, 1392–1404 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Schmitz, F. et al. Cellular expression of CCK-A and CCK-B/gastrin receptors in human gastric mucosa. Regul. Pept. 102, 101–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Goetze, J. P. et al. Characterization of gastrins and their receptor in solid human gastric adenocarcinomas. Scand. J. Gastroenterol. 48, 688–695 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Takamura, A. et al. High expression of gastrin receptor protein in injured mucosa of Helicobacter pylori-positive gastritis. Dig. Dis. Sci. 58, 634–640 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Souza, R. F., Krishnan, K. & Spechler, S. J. Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G211–G218 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Kaz, A. M., Grady, W. M., Stachler, M. D. & Bass, A. J. Genetic and epigenetic alterations in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterol. Clin. North Am. 44, 473–489 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Srivastava, A. et al. High goblet cell count is inversely associated with ploidy abnormalities and risk of adenocarcinoma in Barrett's esophagus. PLoS ONE 10, e0133403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lavery, D. L. et al. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett's oesophagus. Gut http://dx.doi.org/10.1136/gutjnl-2015-310748 (2015).

  120. He, J., Fang, Y. & Chen, X. Surgical models of gastroesophageal reflux with mice. J. Vis. Exp. 102, e53012 (2015).

    Google Scholar 

  121. Becker, L., Huang, Q. & Mashimo, H. Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett's esophagus and esophageal adenocarcinoma. Dis. Esophagus 23, 168–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Harris, J. C., Clarke, P. A., Awan, A., Jankowski, J. & Watson, S. A. An antiapoptotic role for gastrin and the gastrin/CCK-2 receptor in Barrett's esophagus. Cancer Res. 64, 1915–1919 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Ahnen, D. J. et al. The ulceration-associated cell lineage (UACL) reiterates the Brunner's gland differentiation programme but acquires the proliferative organization of the gastric gland. J. Pathol. 173, 317–326 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Abdulnour-Nakhoul, S. et al. Characterization of esophageal submucosal glands in pig tissue and cultures. Dig. Dis. Sci. 52, 3054–3065 (2007).

    Article  PubMed  Google Scholar 

  125. Wang, X. et al. Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 145, 1023–1035 (2011). This study showed KRT7+ residual embryonic cells to be a potent origin of BO in mouse and human.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xian, W., Ho, K. Y., Crum, C. P. & McKeon, F. Cellular origin of Barrett's esophagus: controversy and therapeutic implications. Gastroenterology 142, 1424–1430 (2012).

    Article  PubMed  Google Scholar 

  127. Becker, K. F. et al. Identification of eleven novel tumor-associated E-cadherin mutations. Mutations in brief no. 215. Hum. Mutat. 13, 171 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Huntsman, D. G. et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N. Engl. J. Med. 344, 1904–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014). These authors performed comprehensive analysis in GC samples including whole-genomic sequence, gene expression and methylation arrays, and SCNA analysis, and identified four molecular subtypes.

  130. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015). These authors identified four molecular subtypes in GCs and showed their correlation with different prognoses.

    Article  CAS  PubMed  Google Scholar 

  131. Stachler, M. D. et al. Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015). These authors analysed whole-exome sequencing in paired BO and OAC samples, and showed that TP53 mutations occur early in disease progression whereas genome doubling is a later event.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dulak, A. M. et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res. 72, 4383–4393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013). These authors performed exome and whole-genome sequencing of OAC samples, and identified several new gene mutation signatures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gu, J. et al. Genome-wide catalogue of chromosomal aberrations in Barrett's esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev. Res. (Phila) 3, 1176–1186 (2010).

    Article  CAS  Google Scholar 

  135. Huang, Y. et al. Altered messenger RNA and unique mutational profiles of p53 and Rb in human esophageal carcinomas. Cancer Res. 53, 1889–1894 (1993).

    CAS  PubMed  Google Scholar 

  136. Kimchi, E. T. et al. Progression of Barrett's metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res. 65, 3146–3154 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Miller, C. T. et al. Gene amplification in esophageal adenocarcinomas and Barrett's with high-grade dysplasia. Clin. Cancer Res. 9, 4819–4825 (2003).

    CAS  PubMed  Google Scholar 

  138. Enlow, J. M., Denlinger, C. E., Stroud, M. R., Ralston, J. S. & Reed, C. E. Adenocarcinoma of the esophagus with signet ring cell features portends a poor prognosis. Ann. Thorac. Surg. 96, 1927–1932 (2013).

    Article  PubMed  Google Scholar 

  139. Nafteux, P. R. et al. Signet ring cells in esophageal and gastroesophageal junction carcinomas have a more aggressive biological behavior. Ann. Surg. 260, 1023–1029 (2014).

    Article  PubMed  Google Scholar 

  140. Kalish, R. J., Clancy, P. E., Orringer, M. B. & Appelman, H. D. Clinical, epidemiologic, and morphologic comparison between adenocarcinomas arising in Barrett's esophageal mucosa and in the gastric cardia. Gastroenterology 86, 461–467 (1984).

    CAS  PubMed  Google Scholar 

  141. Reid, B. J. et al. Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am. J. Gastroenterol. 96, 2839–2848 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Farris, A. B. et al. Clinicopathologic and molecular profiles of microsatellite unstable Barrett esophagus-associated adenocarcinoma. Am. J. Surg. Pathol. 35, 647–655 (2011).

    Article  PubMed  Google Scholar 

  143. Van Beek, J. et al. EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J. Clin. Oncol. 22, 664–670 (2004).

    Article  PubMed  Google Scholar 

  144. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nancarrow, D. J. et al. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 68, 4163–4172 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Deng, N. et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61, 673–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Chia, N. Y. et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut 64, 707–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nat. Rev. Cancer 6, 593–602 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Lin, L. et al. Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 4251–4256 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sulahian, R. et al. An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene 33, 5637–5648 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Agrawal, N. et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2, 899–905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Weaver, J. M. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Barrett, M. T. et al. Molecular phenotype of spontaneously arising 4N (G2-tetraploid) intermediates of neoplastic progression in Barrett's esophagus. Cancer Res. 63, 4211–4217 (2003).

    CAS  PubMed  Google Scholar 

  156. Chao, D. L. et al. Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett's esophagus: a long-term prospective study. Clin. Cancer Res. 14, 6988–6995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ross-Innes, C. S. et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat. Genet. 47, 1038–1046 (2015). In this study, the authors performed whole-genome sequencing with paired BO and OAC samples, and revealed that BO is polyclonal, and highly mutated even in the absence of dysplasia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature 392, 402–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Kakiuchi, M. et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Li, X. et al. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett's esophagus. Cancer Prev. Res. (Phila) 7, 114–127 (2014).

    Article  Google Scholar 

  162. Yamamoto, Y. et al. Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion. Nat. Commun. 7, 10380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Matsusaka, K. et al. Classification of Epstein–Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 71, 7187–7197 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Toyota, M. et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 59, 5438–5442 (1999).

    CAS  PubMed  Google Scholar 

  165. Niv, Y. Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer. World J. Gastroenterol. 13, 1767–1769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Suzuki, H. et al. Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int. J. Cancer 83, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Xu, E. et al. Genome-wide methylation analysis shows similar patterns in Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis 34, 2750–2756 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu, W. et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology 144, 956–966 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Bian, Y. S., Osterheld, M. C., Fontolliet, C. & Bosman, F. T. & Benhattar, J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett's esophagus. Gastroenterology 122, 1113–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Hansen, S. et al. Two distinct aetiologies of cardia cancer; evidence from premorbid serological markers of gastric atrophy and Helicobacter pylori status. Gut 56, 918–925 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bosman, F. T., Carneiro, F., Hruban, R. H. & Theise, N. D. (eds) WHO Classification of Tumours of the Digestive System (IARC, 2010).

    Google Scholar 

  172. Hu, B. et al. Gastric cancer: classification, histology and application of molecular pathology. J. Gastrointest. Oncol. 3, 251–261 (2012).

    PubMed  PubMed Central  Google Scholar 

  173. Siewert, J. R. & Stein, H. J. Classification of adenocarcinoma of the oesophagogastric junction. Br. J. Surg. 85, 1457–1459 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Rodriguez, P. et al. BMP signaling in the development of the mouse esophagus and forestomach. Development 137, 4171–4176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pavlov, K. et al. Embryological signaling pathways in Barrett's metaplasia development and malignant transformation; mechanisms and therapeutic opportunities. Crit. Rev. Oncol. Hematol. 92, 25–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Kim, B. M., Buchner, G., Miletich, I., Sharpe, P. T. & Shivdasani, R. A. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev. Cell 8, 611–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Noguchi, T. K. et al. Generation of stomach tissue from mouse embryonic stem cells. Nat. Cell Biol. 17, 984–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Kim, T. H. & Shivdasani, R. A. Notch signaling in stomach epithelial stem cell homeostasis. J. Exp. Med. 208, 677–688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Que, J. et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134, 2521–2531 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Gao, N., White, P. & Kaestner, K. H. Establishment of intestinal identity and epithelial–mesenchymal signaling by Cdx2. Dev. Cell 16, 588–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hryniuk, A., Grainger, S., Savory, J. G. & Lohnes, D. Cdx function is required for maintenance of intestinal identity in the adult. Dev. Biol. 363, 426–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Grainger, S., Savory, J. G. & Lohnes, D. Cdx2 regulates patterning of the intestinal epithelium. Dev. Biol. 339, 155–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Simmini, S. et al. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2. Nat. Commun. 5, 5728 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Stringer, E. J. et al. Cdx2 determines the fate of postnatal intestinal endoderm. Development 139, 465–474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mutoh, H. et al. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem. Biophys. Res. Commun. 294, 470–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Silberg, D. G. et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122, 689–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Hryniuk, A., Grainger, S., Savory, J. G. & Lohnes, D. Cdx1 and Cdx2 function as tumor suppressors. J. Biol. Chem. 289, 33343–33354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Seno, H. et al. CDX2 expression in the stomach with intestinal metaplasia and intestinal-type cancer: prognostic implications. Int. J. Oncol. 21, 769–774 (2002).

    CAS  PubMed  Google Scholar 

  190. Fan, Z., Li, J., Dong, B. & Huang, X. Expression of Cdx2 and hepatocyte antigen in gastric carcinoma: correlation with histologic type and implications for prognosis. Clin. Cancer Res. 11, 6162–6170 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Abrams, J. A., Gonsalves, L. & Neugut, A. I. Diverging trends in the incidence of reflux-related and Helicobacter pylori-related gastric cardia cancer. J. Clin. Gastroenterol. 47, 322–327 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Islami, F. & Kamangar, F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev. Res. (Phila) 1, 329–338 (2008).

    Article  CAS  Google Scholar 

  193. Boulton-Jones, J. R. & Logan, R. P. An inverse relation between cagA-positive strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Helicobacter 4, 281–283 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Rubenstein, J. H. et al. Association between Helicobacter pylori and Barrett's esophagus, erosive esophagitis, and gastroesophageal reflux symptoms. Clin. Gastroenterol. Hepatol. 12, 239–245 (2014).

    Article  PubMed  Google Scholar 

  195. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam J. Bass or Timothy C. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Correa pathway

A cascade that describes the sequential steps during disease progression from superficial chronic gastritis, gastric atrophy and intestinal metaplasia to gastric dysplasia and cancer, proposed by Correa and colleagues.

Goblet cells

Columnar cells in the intestinal glands that secrete mucins such as MUC2 into the gut lumen.

Hypochlorhydria

A decrease or lack of hydrochloric acid in the gastric juice. Hypochlorhydria is accompanied by a gastric atrophy and intestinal metaplasia sequence, in which the number of acid-secreting parietal cells is decreased.

Proton pump inhibitors

(PPIs). Drugs commonly used for patients with gastric ulcer that inhibit gastric acid secretion by binding to the H+/K+-ATPase.

Hypergastrinaemia

Elevated levels of serum gastrin. As gastrin promotes gastric acid secretion from parietal cells, hypergastrinaemia occurs in a negative feedback manner when acid secretion is suppressed by certain drugs such as proton pump inhibitors (PPIs).

Hiatal hernia

A condition in which part of the stomach, including the cardia, slides up towards the oesophageal hiatus in the chest cavity.

Stratified squamous epithelium

Consists of several layers of keratin-expressing squamous cells on a basal membrane, and it is seen in the skin, mouth, oesophagus and vagina.

LGR5

A receptor that can bind to R-spondin and activate the WNT–β-catenin pathway.

Parietal cells

Gastric epithelial cells that reside in the corpus and secrete gastric acid.

Chief cells

Gastric epithelial cells that reside in the base of corpus glands and secrete digestive enzymes such as pepsin.

Enterochromaffin-like (ECL) cells

Gastric epithelial neuroendocrine cells that promote acid secretion from parietal cells by producing histamine.

LRIG1

Expressed in intestinal and epidermal stem cells and regulates quiescence of these cells.

SOX2

Expressed in multiple stem cells including embryonic stem cells and adult tissue stem cells, and is essential for maintaining self-renewal and pluripotency.

LGR5–DTR mouse

A mouse in which diphtheria toxin receptor (DTR) is expressed in leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)+ cells. Given that cells in mice do not normally express DTR, only LGR5+ cells are killed and ablated when diphtheria toxin (DT) is given. In the stomach, mature chief cells express LGR5, thus DT administration causes specific cell death in the chief cell population.

Signet ring cancer cells

Cancer cells that contain a large quantity of mucins in the cytoplasm and have a thin nucleus in the cell periphery.

G-cells

Gastric epithelial cells in the antrum that secrete gastrin.

D-cells

Gastric epithelial cells in the antrum that secrete somatostatin.

+4 position

The cell position in a gastrointestinal gland is usually counted and numbered from the base of the gland (that is, the cell at the bottom of the gland is called position +1). Until leucine-rich repeat- containing G protein-coupled receptor 5 (LGR5)+ stem cells were discovered, it was thought that major gastrointestinal stem cells resided at the +4 position, based on label-retaining assays.

CCKBR

A receptor for the gastrin peptide. It has been thought to be involved in gastric acid secretion in CCKBR+ neuroendocrine cells and parietal cells.

Residual embryonic cells

(RECs). Potential precursors of Barrett oesophagus; these cells are most evident in the gastric cardia in the embryonic stage, but some can persist in adult mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, Y., Sethi, N., Sepulveda, A. et al. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap?. Nat Rev Cancer 16, 305–318 (2016). https://doi.org/10.1038/nrc.2016.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.24

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer