Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer cell motility: lessons from migration in confined spaces

Abstract

Time-lapse, deep-tissue imaging made possible by advances in intravital microscopy has demonstrated the importance of tumour cell migration through confining tracks in vivo. These tracks may either be endogenous features of tissues or be created by tumour or tumour-associated cells. Importantly, migration mechanisms through confining microenvironments are not predicted by 2D migration assays. Engineered in vitro models have been used to delineate the mechanisms of cell motility through confining spaces encountered in vivo. Understanding cancer cell locomotion through physiologically relevant confining tracks could be useful in developing therapeutic strategies to combat metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microenvironments for confined migration in vivo.
Figure 2: Determinants of cell migration in confinement.

Similar content being viewed by others

References

  1. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. American Cancer Society. Cancer facts and figures 2016. American Cancer Society http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/ (2016).

  3. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Alexander, S., Weigelin, B., Winkler, F. & Friedl, P. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell Biol. 25, 659–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Gritsenko, P. G., Ilina, O. & Friedl, P. Interstitial guidance of cancer invasion. J. Pathol. 226, 185–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, S. & Friedl, P. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 339, 83–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. IntraVital 1, 32–43 (2012).

    Article  PubMed  Google Scholar 

  12. Friedl, P. & Alexander, S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Wolf, K. & Friedl, P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 21, 736–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Bremer, C., Tung, C. H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Fisher, K. E. et al. MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J. Cell Sci. 122, 4558–4569 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Patsialou, A. et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. IntraVital 2, e25294 (2013).

    Article  PubMed  Google Scholar 

  18. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hung, W. C. et al. Confinement-sensing and signal optimization via Piezo1/PKA and myosin II pathways. Cell Rep. 15, 1430–1441 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Provenzano, P. P. et al. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lugassy, C. et al. Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. Cancer Microenviron. 7, 139–152 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bentolila, L. A. et al. Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci. Rep. 6, 23834 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lugassy, C. & Barnhill, R. L. Angiotropic melanoma and extravascular migratory metastasis: a review. Adv. Anat. Pathol. 14, 195–201 (2007).

    Article  PubMed  Google Scholar 

  26. Naumov, G. N. et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J. Cell Sci. 112, 1835–1842 (1999).

    CAS  PubMed  Google Scholar 

  27. Sahai, E. et al. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 5, 14 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang, W. et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 67, 3505–3511 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sharma, V. P. et al. Reconstitution of in vivo macrophage–tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. IntraVital 1, 77–85 (2012).

    Article  PubMed  Google Scholar 

  30. Cuddapah, V. A., Robel, S., Watkins, S. & Sontheimer, H. A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15, 455–465 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Yamauchi, K. et al. Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res. 65, 4246–4252 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jain, A. et al. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat. Mater. 13, 308–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Paul, C. D., Hung, W. C., Wirtz, D. & Konstantopouos, K. Engineered models of confined cell migration. Annu. Rev. Biomed. Eng. 18, 159–180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Irimia, D., Charras, G., Agrawal, N., Mitchison, T. & Toner, M. Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7, 1783–1790 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong, Z. et al. Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS ONE 7, e29211 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Paul, C. D. et al. Interplay of the physical microenvironment, contact guidance, and intracellular signaling in cell decision making. FASEB J. 30, 2161–2170 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lin, B., Yin, T., Wu, Y. I., Inoue, T. & Levchenko, A. Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration. Nat. Commun. 6, 6619 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. Wilson, K. et al. Mechanisms of leading edge protrusion in interstitial migration. Nat. Commun. 4, 2896 (2013).

    Article  PubMed  CAS  Google Scholar 

  43. Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161, 374–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, B. et al. Synthetic spatially graded Rac activation drives cell polarization and movement. Proc. Natl Acad. Sci. USA 109, E3668–E3677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stroka, K. M. & Konstantopoulos, K. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am. J. Physiol. Cell Physiol. 306, C98–C109 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Harada, T. et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Beadle, C. et al. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Davidson, P. M., Denais, C., Bakshi, M. C. & Lammerding, J. Nuclear deformability constitutes a rate-limiting step during cell migration in 3D environments. Cell. Mol. Bioeng. 7, 293–306 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Rowat, A. C. et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Booth-Gauthier, E. A. et al. Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. 5, 569–577 (2013).

    Article  CAS  Google Scholar 

  53. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Skau, C.T. et al. FMN2 makes perinuclear actin to protect nuclei during confined migration and promote metastasis. Cell 167, 1–15 (2016).

    Article  CAS  Google Scholar 

  56. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Friedl, P. & Wolf, K. Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev. 28, 129–135 (2009).

    Article  PubMed  Google Scholar 

  58. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Friedl, P. & Wolf, K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68, 7247–7249 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Carey, S. P. et al. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am. J. Physiol. Cell Physiol. 308, C436–C447 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Petrie, R. J., Gavara, N., Chadwick, R. S. & Yamada, K. M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197, 439–455 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Parmar, H. & Cunha, G. R. Epithelial–stromal interactions in the mouse and human mammary gland in vivo. Endocr. Relat. Cancer 11, 437–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Patsialou, A. et al. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 69, 9498–9506 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840, 2386–2395 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Ilina, O., Bakker, G. J., Vasaturo, A., Hofmann, R. M. & Friedl, P. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8, 015010 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Kraning-Rush, C. M., Carey, S. P., Lampi, M. C. & Reinhart-King, C. A. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D. Integr. Biol. 5, 606–616 (2013).

    Article  CAS  Google Scholar 

  70. Hung, W. C. et al. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202, 807–824 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Petrie, R. J. & Yamada, K. M. At the leading edge of three-dimensional cell migration. J. Cell Sci. 125, 5917–5926 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Friedl, P., Sahai, E., Weiss, S. & Yamada, K. M. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13, 743–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Petrie, R. J. & Yamada, K. M. Fibroblasts lead the way: a unified view of 3D cell motility. Trends Cell Biol. 25, 666–674 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang, P. et al. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways. Oncogene 34, 4558–4569 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Balzer, E. M. et al. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045–4056 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Fischer, R. S., Gardel, M., Ma, X., Adelstein, R. S. & Waterman, C. M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr. Biol. 19, 260–265 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Raman, P. S., Paul, C. D., Stroka, K. M. & Konstantopoulos, K. Probing cell traction forces in confined microenvironments. Lab Chip 13, 4599–4607 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hawkins, R. J. et al. Pushing off the walls: a mechanism of cell motility in confinement. Phys. Rev. Lett. 102, 058103 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Petrie, R. J., Koo, H. & Yamada, K. M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5, 711–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Paluch, E. K. & Raz, E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25, 582–590 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Madsen, C. D. et al. STRIPAK components determine mode of cancer cell migration and metastasis. Nat. Cell Biol. 17, 68–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Bergert, M. et al. Force transmission during adhesion-independent migration. Nat. Cell Biol. 17, 524–529 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Tozluoglu, M. et al. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15, 751–762 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Bergert, M., Chandradoss, S. D., Desai, R. A. & Paluch, E. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl Acad. Sci. USA 109, 14434–14439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Orgaz, J. L. et al. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat. Commun. 5, 4255 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Chartier, L. et al. Calyculin-A increases the level of protein phosphorylation and changes the shape of 3T3 fibroblasts. Cell Motil. Cytoskeleton 18, 26–40 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Ruprecht, V. et al. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160, 673–685 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Stroka, K. M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Taloni, A. et al. Volume changes during active shape fluctuations in cells. Phys. Rev. Lett. 114, 208101 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Chae, Y. K. et al. Expression of aquaporin 5 (AQP5) promotes tumor invasion in human non-small-cell lung cancer. PLoS ONE 3, e2162 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jung, H. J., Park, J. Y., Jeon, H. S. & Kwon, T. H. Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS ONE 6, e28492 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Machida, Y. et al. Relationship of aquaporin 1, 3, and 5 expression in lung cancer cells to cellular differentiation, invasive growth, and metastasis potential. Hum. Pathol. 42, 669–678 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Tominaga, T., Ishizaki, T., Narumiya, S. & Barber, D. L. p160ROCK mediates RhoA activation of Na–H exchange. EMBO J. 17, 4712–4722 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Stroka, K. M., Gu, Z., Sun, S. X. & Konstantopoulos, K. Bioengineering paradigms for cell migration in confined microenvironments. Curr. Opin. Cell Biol. 30, 41–50 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Skoge, M. et al. A worldwide competition to compare the speed and chemotactic accuracy of neutrophil-like cells. PLoS ONE 11, e0154491 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lammermann, T. et al. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113, 5703–5710 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Prentice-Mott, H. V. et al. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc. Natl Acad. Sci. USA 110, 21006–21011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Riching, K. M. et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107, 2546–2558 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Elliott, H. et al. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature. Nat. Cell Biol. 17, 137–147 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Scherber, C. et al. Epithelial cell guidance by self-generated EGF gradients. Integr. Biol. 4, 259–269 (2012).

    Article  Google Scholar 

  104. Wong, I. Y. et al. Collective and individual migration following the epithelial–mesenchymal transition. Nat. Mater. 13, 1063–1071 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Vedula, S. R. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Roca-Cusachs, P., Iskratsch, T. & Sheetz, M. P. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025–3038 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Frey, M. T., Tsai, I. Y., Russell, T. P., Hanks, S. K. & Wang, Y. L. Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys. J. 90, 3774–3782 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wong, S., Guo, W. H. & Wang, Y. L. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. Proc. Natl Acad. Sci. USA 111, 17176–17181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Enyedi, B., Jelcic, M. & Niethammer, P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165, 1160–1170 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Potapova, T. A., Zhu, J. & Li, R. Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev. 32, 377–389 (2013).

    Article  PubMed  Google Scholar 

  114. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Mak, M., Reinhart-King, C. A. & Erickson, D. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 13, 340–348 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Tse, H. T., Weaver, W. M. & Di Carlo, D. Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments. PLoS ONE 7, e38986 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kittur, H., Weaver, W. & Di Carlo, D. Well-plate mechanical confinement platform for studies of mechanical mutagenesis. Biomed. Microdevices 16, 439–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Lancaster, O. M. et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell 25, 270–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Luxenburg, C., Pasolli, H. A., Williams, S. E. & Fuchs, E. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat. Cell Biol. 13, 203–214 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Le Berre, M., Aubertin, J. & Piel, M. Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr. Biol. 4, 1406–1414 (2012).

    Article  CAS  Google Scholar 

  121. Dalby, M. J., Riehle, M. O., Yarwood, S. J., Wilkinson, C. D. & Curtis, A. S. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 284, 274–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Thomas, C. H., Collier, J. H., Sfeir, C. S. & Healy, K. E. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. USA 99, 1972–1977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway within the nucleus. Nat. Cell Biol. 16, 376–381 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lomakin, A. J. et al. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat. Cell Biol. 17, 1435–1445 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zhang, Y., Wen, J., Zhou, L. & Qin, L. Utilizing a high-throughput microfluidic platform to study hypoxia-driven mesenchymal-mode cell migration. Integr. Biol. 7, 672–680 (2015).

    Article  CAS  Google Scholar 

  126. Ritsma, L. et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci. Transl Med. 4, 158ra145 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Rolli, C. G., Seufferlein, T., Kemkemer, R. & Spatz, J. P. Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach. PLoS ONE 5, e8726 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Breckenridge, M. T., Egelhoff, T. T. & Baskaran, H. A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomed. Microdevices 12, 543–553 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Irimia, D. Cell migration in confined environments. Methods Cell Biol. 121, 141–153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Vargas, P., Terriac, E., Lennon-Dumenil, A. M. & Piel, M. Study of cell migration in microfabricated channels. J. Vis. Exp. 84, e51099 (2014).

    Google Scholar 

  131. Pathak, A. & Kumar, S. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5, 1067–1075 (2013).

    Article  CAS  Google Scholar 

  132. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10, 538–549 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the US National Institutes of Health (grants R01CA183804, R01CA186286, R01GMS114675 and U54CA210173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Konstantopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

3D longitudinal tracks

Tunnel-like spaces in which cells are confined either at their basal and apical surfaces or around their periphery, but encounter open space at the cell front and rear.

Collective migration

Cell migration in which groups of cells migrate while in physical contact and in the same net direction. This is in contrast to single cell migration in which cells move individually and are not in physical contact with other motile cells.

Contact guidance

The tendency of cells (or groups of cells) to align and polarize along topographical features, such as microchannel walls or aligned collagen fibres.

Contact inhibition

The tendency of cells to suppress forward movement upon leading-edge contact with another cell.

Matrix metalloproteinases

(MMPs). Soluble or membrane bound enzymes that sever extracellular matrix proteins to mediate matrix remodelling, cell migration or cell signalling.

Organ-on-a-chip

Engineered devices that attempt to recapitulate the major functions and anatomical organization of an organ on a miniaturized scale.

Polydimethylsiloxane

(PDMS). A silicone rubber polymer that is frequently used to fabricate microfluidic devices. PDMS is optically transparent, allows diffusion of oxygen and can be coated with various extracellular matrix proteins to promote cell adhesion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, C., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat Rev Cancer 17, 131–140 (2017). https://doi.org/10.1038/nrc.2016.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.123

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer