Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Antifungal drug testing by combining minimal inhibitory concentration testing with target identification by gas chromatography–mass spectrometry

Abstract

Fungal infections and their increasing resistance to antibiotics are an emerging threat to public health. Novel antifungal drugs, as well technologies that can help us bolster the antimicrobial pipeline and understand resistance mechanisms, are needed. The ergosterol biosynthetic pathway is one potential target for antifungal drugs. Here we describe how antifungal susceptibility testing can be combined with target identification in distal ergosterol biosynthesis by means of gas chromatography–mass spectrometry. The fungi are treated with sublethal doses of active components that block ergosterol biosynthesis, and the ergosterol biosynthesis intermediates are analyzed in a targeted metabolomics manner after derivatization (trimethylsilylation). Drug treatment results in distinct sterol patterns that are characteristic of the affected enzyme. Sterol identification based on relative retention times and electron ionization (EI) mass spectra, as well as semiquantitative assessment of ergosterol intermediates, is described. The protocol is applicable to yeasts and molds. The overall analysis time from incubation to test result is not more than 3 d. The assay can be used to determine whether an antifungal compound of interest targets sterol biosynthesis, and, if so, to determine which enzyme in the pathway it targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main ergosterol biosynthesis pathways under enzyme inhibition.
Figure 2
Figure 3: Separation of sterol isomers obtained after treatment of S. cerevisiae with the morpholine antifungal Fenpropimorph.
Figure 4: Changes in the sterol patterns obtained after incubation of A. fumigatus (mold) (a) and C. krusei (yeast) (b) with the sterol C14-demethylase (enzyme C) inhibitor EMC120B12.

Similar content being viewed by others

References

  1. Denning, D.W. & Bromley, M.J. How to bolster the antifungal pipeline. Science 347, 1414–1416 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, G.D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. The White House Briefing Room FACT SHEET: Obama Administration Releases National Action Plan to Combat Antibiotic-Resistant Bacteria. https://www.whitehouse.gov/the-press-office/2015/03/27/fact-sheet-obama-administration-releases-national-action-plan-combat-ant.

  4. Centers for Disease Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/.

  5. Butler, M.S., Blaskovich, M.A. & Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. 66, 571–591 (2013).

    Article  CAS  Google Scholar 

  6. Thompson Iii, G.R., Cadena, J. & Patterson, T.F. Overview of antifungal agents. Clin. Chest Med. 30, 203–215 (2009).

    Article  Google Scholar 

  7. Miceli, M.H. & Kauffman, C.A. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin. Infect. Dis. 61, 1558–1565 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Petrikkos, G. & Skiada, A. Recent advances in antifungal chemotherapy. Int. J. Antimicrob. Agents 30, 108–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kathiravan, M.K. et al. The biology and chemistry of antifungal agents: a review. Bioorg. Med. Chem. 20, 5678–5698 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Arendrup, M.C., Cuenca-Estrella, M., Lass-Flörl, C. & Hope, W. The, EUCAST Afst. Technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST)*. Clin. Microbiol. Infect. 18, E246–E247 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Arendrup, M.C. et al. EUCAST definitive document EDef 9.3: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents forconidia-forming moulds. EUCAST, Växjö, Sweden. EUCAST Definitive Document EDef 9.3 http://www.aspergillus.org.uk/sites/default/files/pictures/Lab_protocols/EUCAST_E_Def_9_3_Mould_testing_definitive_0.pdf (2015).

  12. Müller, C., Staudacher, V., Krauss, J., Giera, M. & Bracher, F. A convenient cellular assay for the identification of the molecular target of ergosterol biosynthesis inhibitors and quantification of their effects on total ergosterol biosynthesis. Steroids 78, 483–493 (2013).

    Article  PubMed  CAS  Google Scholar 

  13. Müller, C. et al. Fungal sterol C22-desaturase is not an antimycotic target as shown by selective inhibitors and testing on clinical isolates. Steroids 101, 1–6 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Keller, P. et al. An antifungal benzimidazole derivative inhibits ergosterol biosynthesis and reveals novel sterols. Antimicrob. Agents Chemother. 59, 6296–6307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giera, M., Müller, C. & Bracher, F. Analysis and experimental inhibition of distal cholesterol biosynthesis. Chromatographia 78, 343–358 (2014).

    Article  CAS  Google Scholar 

  16. Gerst, N., Ruan, B., Pang, J., Wilson, W.K. & Schroepfer, G.J. An updated look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. J. Lipid Res. 38, 1685–1701 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Goad, L.J. & Akihisa, T. Mass spectrometry of sterols in Analysis of Sterols 152–196 (Springer Netherlands, 1997).

  18. Zhao, Y. et al. Expression turnover profiling to monitor the antifungal activities of amphotericin B, voriconazole, and micafungin against Aspergillus fumigatus. Antimicrob. Agents Chemother. 56, 2770–2772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, N. et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob. Agents Chemother. 57, 532–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burger-Kentischer, A. et al. A screening assay based on host-pathogen interaction models identifies a set of novel antifungal benzimidazole derivatives. Antimicrob. Agents Chemother. 55, 4789–4801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alcazar-Fuoli, L. & Mellado, E. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front. Microbiol. 3, 439 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goad, L.J. & Akihisa, T. Analysis of Sterols 1st edn. (Blackie Academic & Professional, 1997).

  23. Nes, W.D. in Analysis of Sterols and Other Biologically Significant Steroids (ed. Edward J. Parish) iv (Academic Press, 1989).

  24. Renard, D., Perruchon, J., Giera, M., Müller, J. & Bracher, F. Side chain azasteroids and thiasteroids as sterol methyltransferase inhibitors in ergosterol biosynthesis. Bioorg. Med. Chem. 17, 8123–8137 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Burbiel, J. & Bracher, F. Azasteroids as antifungals. Steroids 68, 587–594 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kristan, K. & Rižner, T.L. Steroid-transforming enzymes in fungi. J. Steroid Biochem. Mol. Biol. 129, 79–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giera, M., Plössl, F. & Bracher, F. Fast and easy in vitro screening assay for cholesterol biosynthesis inhibitors in the post-squalene pathway. Steroids 72, 633–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Giera, M. & Bracher, F. First total synthesis of ergosta-5,8-dien-3β-ol. Sci. Pharm. 76, 599–604 (2008).

    Article  CAS  Google Scholar 

  30. Kloos, D. et al. Comprehensive gas chromatography–electron ionisation mass spectrometric analysis of fatty acids and sterols using sequential one-pot silylation: quantification and isotopologue analysis. Rapid Commun. Mass Spectrom. 28, 1507–1514 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Gsaller, F. et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog. 12, e1005775 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Balkis, M.M., Leidich, S.D., Mukherjee, P.K. & Ghannoum, M.A. Mechanisms of fungal resistance. Drugs 62, 1025–1040 (2012).

    Article  Google Scholar 

  33. Wayne, P.A. M38-A2. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, 2nd edn. Clinical and Laboratory Standards Institute. http://shop.clsi.org/site/Sample_pdf/M38A2_sample.pdf (2008).

  34. Xu, L. & Porter, N.A. Reactivities and products of free radical oxidation of cholestadienols. J. Am. Chem. Soc. 136, 5443–5450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plössl, F., Giera, M. & Bracher, F. Multiresidue analytical method using dispersive solid-phase extraction and gas chromatography/ion trap mass spectrometry to determine pharmaceuticals in whole blood. J. Chromatogr. A 1135, 19–26 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Goad, L.J. & Akihisa, T. Gas—liquid chromatography of sterols. in Analysis of Sterols 115–143 (Springer Netherlands, 1997).

  37. Alcazar-Fuoli, L. et al. Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids 73, 339–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, S., Norton, R.A., Crumley, F.G. & Nes, W.D. Comparison of the chromatographic properties of sterols, select additional steroids and triterpenoids: gravity-flow column liquid chromatography, thin-layer chromatography, gas—liquid chromatography and high-performance liquid chromatography. J. Chromatogr. A 452, 377–398 (1988).

    Article  CAS  Google Scholar 

  39. Itoh, T., Sica, D. & Djerassi, C. Minor and trace sterols in marine invertebrates. Part 35. Isolation and structure elucidation of seventy-four sterols from the sponge Axinella cannabina. J Chem. Soc., Perkin Trans. 1, 147–153 (1983).

    Article  Google Scholar 

  40. Lorenz, R.T., Fenner, G., Parks, L.W. & Haeckler, K. 2 - Analysis of steryl esters A2 - Nes, W. David. in Analysis of Sterols and Other Biologically Significant Steroids (ed. Edward J. Parish) 33–47 (Academic Press, 1989).

  41. Giera, M., Renard, D., Plössl, F. & Bracher, F. Lathosterol side chain amides—a new class of human lathosterol oxidase inhibitors. Steroids 73, 299–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gachotte, D. et al. Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. Proc. Natl. Acad. Sci. USA 96, 12655–12660 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanden Bossche, H. et al. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob. Agents Chemother. 37, 2101–2105 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruan, B. et al. Alternative pathways of sterol synthesis in yeast: use of C27 sterol tracers to study aberrant double-bond migrations and evaluate their relative importance. Steroids 67, 1109–1119 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Georgopapadakou, N.H. Antifungals: mechanism of action and resistance, established and novel drugs. Curr. Opin. Microbiol. 1, 547–557 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Nes, W.R. A comparison of methods for the identification of sterols. Methods Enzymol. 111, 3–37 1985.

    Article  CAS  PubMed  Google Scholar 

  47. Odds, F.C., Brown, A.J.P. & Gow, N.A.R. Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Goldman, R.C., Zakula, D., Capobianco, J.O., Sharpe, B.A. & Griffin, J.H. Inhibition of 2,3-oxidosqualene-lanosterol cyclase in Candida albicans by pyridinium ion-based inhibitors. Antimicrob. Agents Chemother. 40, 1044–1047 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Polak, A. Mode of action of morpholine derivatives. Ann. N. Y. Acad. Sci. 544, 221–228 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Helliwell, S.B. et al. FR171456 is a specific inhibitor of mammalian NSDHL and yeast Erg26p. Nat. Commun. 6, 8613 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Kuchta, T. et al. Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent. Antimicrob. Agents Chemother. 39, 1538–1541 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldstein, A.S. Synthesis and bioevaluation of Δ7-5-desaturase inhibitors, an enzyme late in the biosynthesis of the fungal sterol ergosterol. J. Med. Chem. 39, 5092–5099 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Pierce, H.D., Pierce, A.M., Srinivasan, R., Unrau, A.M. & Oehlschlager, A.C. Azasterol inhibitors in yeast. Biochim. Biophys. Acta 529, 429–437 (1978).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Müller for his contribution to the early development of this protocol. Further, we thank EMC microcollections for providing the investigational drug EMC120B12.

Author information

Authors and Affiliations

Authors

Contributions

C.M., U.B. and M.G. carried out the experiments. C.M., F.B. and M.G. designed the protocol. All authors contributed to writing the protocol.

Corresponding author

Correspondence to Martin Giera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 (PDF 4485 kb)

Supplementary Data

Supplementary Data. (ZIP 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C., Binder, U., Bracher, F. et al. Antifungal drug testing by combining minimal inhibitory concentration testing with target identification by gas chromatography–mass spectrometry. Nat Protoc 12, 947–963 (2017). https://doi.org/10.1038/nprot.2017.005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research