Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Precise and efficient scarless genome editing in stem cells using CORRECT

Abstract

CRISPR/Cas9 is a promising tool for genome-editing DNA in cells with single-base-pair precision, which allows novel in vitro models of human disease to be generated—e.g., in pluripotent stem cells. However, the accuracy of intended sequence changes can be severely diminished by CRISPR/Cas9's propensity to re-edit previously modified loci, causing unwanted mutations (indels) alongside intended changes. Here we describe a genome-editing framework termed consecutive re-guide or re-Cas steps to erase CRISPR/Cas-blocked targets (CORRECT), which, by exploiting the use of highly efficacious CRISPR/Cas-blocking mutations in two rounds of genome editing, enables accurate, efficient and scarless introduction of specific base changes—for example, in human induced pluripotent (iPS) stem cells. This protocol outlines in detail how to implement either the re-Guide or re-Cas variants of CORRECT to generate scarlessly edited isogenic stem cell lines with intended monoallelic and biallelic sequence changes in 3 months.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CRISPR/Cas-blocking mutations increase editing accuracy in hPSCs.
Figure 2: Scarless editing using the CORRECT re-Guide or re-Cas variants.
Figure 3
Figure 4: Anticipated results for re-Guide and re-Cas mutation knock-in in hPSCs.
Figure 5: Efficient introduction of homozygous or heterozygous mutations by manipulating cut-to-mutation distance and by using mixed repair templates.

Similar content being viewed by others

References

  1. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jinek, M. et al. RNA-programmed genome editing in human cells. elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hruscha, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982–4987 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Marraffini, L.A. & Sontheimer, E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J.A. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Dow, L.E. et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Platt, R.J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Canver, M.C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289, 21312–21324 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, S., Staahl, B.T., Alla, R.K. & Doudna, J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife 3, e04766 (2015).

    Article  Google Scholar 

  15. Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu, V.T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Richardson, C.D., Ray, G.J., DeWitt, M.A., Curie, G.L. & Corn, J.E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Song, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 1–7 (2016).

    Google Scholar 

  20. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Miyaoka, Y. et al. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat. Methods 11, 291–293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yusa, K. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nat. Protoc. 8, 2061–2078 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Zetsche, B., Volz, S.E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108, 10098–10103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moreno-Mateos, M.A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaj, T. et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842–1859 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Bell, C.C., Magor, G.W., Gillinder, K.R. & Perkins, A.C. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics 15, 1002 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Smith, C. et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crosetto, N. et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361–365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Braam, S.R. et al. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat. Protoc. 3, 1435–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M. & Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren, X. et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 9, 1151–1162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu, B.X.H., St Onge, R.P., Fire, A.Z. & Smith, J.D. Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo. Nucleic Acids Res. 44, 5365–5377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haass, C. et al. The Swedish mutation causes early-onset Alzheimer's disease by beta-secretase cleavage within the secretory pathway. Nat. Med. 1, 1291–1296 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Inui, M. et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4, 5396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, L. et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 41, 9049–9061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bialk, P., Rivera-Torres, N., Strouse, B. & Kmiec, E.B. Regulation of gene editing activity directed by single-stranded oligonucleotides and CRISPR/Cas9 Systems. PLoS One 10, e0129308 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Rockefeller University, The New York Stem Cell Foundation, The Ellison Foundation, the Cure Alzheimer's Fund and the Empire State Stem Cell fund through New York State Department of Health. D.K. is a Howard Hughes Medical Institute International Student Research Fellow and received a fellowship from the National Sciences and Engineering Research Council of Canada. D.P. is a New York Stem Cell Foundation Druckenmiller Fellow and received a fellowship from the German Academy of Sciences Leopoldina. S.T. is supported by the Agency for Science, Technology and Research of Singapore. We thank A. Sproul, S. Jacob and S. Noggle for sharing protocols and know-how for stem cell culture and for sharing stem cell lines. We thank members of the Tessier-Lavigne laboratory for discussions. Our thanks also go to S. Mazel and the team at the Rockefeller University Flow Cytometry Resource Center, C. Zhao and the team at the Rockefeller University Genomics Resource Center, and A. Chen and M. Duffield for technical help. Opinions expressed here are solely those of the authors and do not necessarily reflect those of the Empire State Stem Cell Fund, the New York State Department of Health or the State of New York.

Author information

Authors and Affiliations

Authors

Contributions

D.K., D.P. and M.T.-L. conceived and designed the protocol. D.K. and D.P. performed and analyzed the experiments. S.T. helped analyze NGS data. D.K., D.P. and M.T.-L. wrote the manuscript.

Corresponding author

Correspondence to Marc Tessier-Lavigne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

sgRNA, primer and ssODN repair template sequences used in our experiments. (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwart, D., Paquet, D., Teo, S. et al. Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc 12, 329–354 (2017). https://doi.org/10.1038/nprot.2016.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.171

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing