Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy

Abstract

Genetically encoded fluorescent protein (FP)-based biosensor probes are useful tools for monitoring cellular events in living cells and tissues. Because these probes were developed for one-photon excitation approaches, their broad two-photon excitation (2PE) and poorly understood photobleaching characteristics have made their implementation in studies using two-photon laser-scanning microscopy (TPLSM) challenging. Here we describe a protocol that simplifies the use of Förster resonance energy transfer (FRET)-based biosensors in TPLSM. First, the TPLSM system is evaluated and optimized using FRET standards expressed in living cells, which enables the determination of spectral bleed-through (SBT) and the confirmation of FRET measurements from the known standards. Next, we describe how to apply the approach experimentally using a modified version of the A kinase activity reporter (AKAR) protein kinase A (PKA) biosensor as an example—first in cells in culture and then in hepatocytes in the liver of living mice. The microscopic imaging can be accomplished in a day in laboratories that routinely use TPLSM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the setup for measuring biosensor activity in a living animal.
Figure 2: Schematic workflow of the procedure and constructs described in Table 1.
Figure 3: 2PE spectral scan of the indicated FPs expressed individually in living HEK-293 cells.
Figure 4: FRET ratio images of HEK-293 cells expressing the indicated FRET standard probes.
Figure 5: Ratiometric FRET measurements from HEK-293 cells expressing the AKAR4.1 biosensor probe.
Figure 6: Use of TPLSM to measure the response of the AKAR4.1 biosensor to glucagon in hepatocytes in the intact mouse liver.

Similar content being viewed by others

References

  1. Day, R.N. & Davidson, M.W. The Fluorescent Protein Revolution (ed. Periasamy, A.) (Taylor & Francis, Boca Raton, FL, 2014).

  2. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. VanEngelenburg, S.B. & Palmer, A.E. Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 12, 60–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. DiPilato, L.M. & Zhang, J. Fluorescent protein-based biosensors: resolving spatiotemporal dynamics of signaling. Curr. Opin. Chem. Biol. 14, 37–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Miyawaki, A. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu. Rev. Biochem. 80, 357–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, J., Ma, Y., Taylor, S.S. & Tsien, R.Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. USA 98, 14997–15002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patterson, G.H. & Piston, D.W. Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, T.S., Zeng, S.Q., Luo, Q.M., Zhang, Z.H. & Zhou, W. High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy. Biochem. Biophys. Res. Commun. 291, 1272–1275 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M. & Welsh, M.J. Identification and function of thermosensory neurons in Drosophila larvae. Nat. Neurosci. 6, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Ben Arous, J., Tanizawa, Y., Rabinowitch, I., Chatenay, D. & Schafer, W.R. Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans. J. Neurosci. Methods 187, 229–234 (2010).

    Article  PubMed  Google Scholar 

  11. Kardash, E., Bandemer, J. & Raz, E. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat. Protoc. 6, 1835–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hara, M. et al. Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am. J. Physiol. Cell Physiol. 287, C932–C938 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kamioka, Y. et al. Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Struct. Funct. 37, 65–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Oldach, L. & Zhang, J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem. Biol. 21, 186–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aoki, K., Kamioka, Y. & Matsuda, M. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing. Dev. Growth Differ. 55, 515–522 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Berglund, K. et al. Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biol. 35, 207–228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haustein, M.D. et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 82, 413–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnsson, A.K. et al. The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Rep. 6, 1153–1164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchholz, C.J., Friedel, T. & Buning, H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 33, 777–790 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Babbey, C.M. et al. Quantitative intravital microscopy of hepatic transport. Intravital 1, 44–53 (2012).

    Article  Google Scholar 

  22. Dunn, K.W. et al. Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am. J. Physiol. Cell Physiol. 283, C905–C916 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Dunn, K.W., Sutton, T.A. & Sandoval, R.M. Live-animal imaging of renal function by multiphoton microscopy. Curr. Protoc. Cytom. 14, 12.9 (2007).

    Google Scholar 

  24. Ryan, J.C., Dunn, K.W. & Decker, B.S. Effects of chronic kidney disease on liver transport: quantitative intravital microscopy of fluorescein transport in the rat liver. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1488–R1492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Presson, R.G. Jr. et al. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. Am. J. Pathol. 179, 75–82 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vinegoni, C. et al. Sequential average segmented microscopy for high signal-to-noise ratio motion-artifact-free in vivo heart imaging. Biomed. Opt. Express 4, 2095–2106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dunn, K.W., Lorenz, K.S., Salama, P. & Delp, E.J. IMART software for correction of motion artifacts in images collected in intravital microscopy. Intravital 3, e28210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee, S., Vinegoni, C., Sebas, M. & Weissleder, R. Automated motion artifact removal for intravital microscopy, without a priori information. Sci. Rep. 4, 4507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lorenz, K.S., Salama, P., Dunn, K.W. & Delp, E.J. Digital correction of motion artefacts in microscopy image sequences collected from living animals using rigid and nonrigid registration. J. Microsc. 245, 148–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Soulet, D., Pare, A., Coste, J. & Lacroix, S. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy. PLoS One 8, e53942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Radbruch, H. et al. Intravital FRET: probing cellular and tissue function. Int. J. Mol. Sci. 16, 11713–11727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tao, W. et al. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy. Am. J. Physiol. Cell Physiol. 309, C724–C735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goedhart, J. et al. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7, 137–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. Markwardt, M.L. et al. An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6, e17896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Rizzo, M.A., Springer, G., Segawa, K., Zipfel, W.R. & Piston, D.W. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microsc. Microanal. 12, 238–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Thaler, C., Koushik, S.V., Blank, P.S. & Vogel, S.S. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys. J. 89, 2736–2749.

  42. Zhou, X., Herbst-Robinson, K.J. & Zhang, J. Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol. 504, 317–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rincon, M.Y., VandenDriessche, T. & Chuah, M.K. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc. Res. 108, 4–20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McGhee, E.J. et al. FLIM-FRET imaging in vivoreveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases 2, 239–244 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nobis, M. et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res. 73, 4674–4686 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Janssen, A., Beerling, E., Medema, R. & van Rheenen, J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS One 8, e64029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thestrup, T. et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Miller, R.A. et al. Biguanides suppress hepatic glucagon signaling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Day, R.N. Measuring protein interactions using Forster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods 66, 200–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Broussard, J.A., Rappaz, B., Webb, D.J. & Brown, C.M. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 8, 265–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Periasamy, A. & Day, R.N. Molecular Imaging: FRET Microscopy and Spectroscopy (Oxford University Press, New York, 2005).

Download references

Acknowledgements

This research was supported by the National Institutes of Health O'Brien Center for Advanced Renal Microscopic Analysis (NIH-NIDDK P30DK079312 to R.N.D. and K.W.D.). Microscopy studies were conducted at the Indiana Center for Biological Microscopy. The authors thank M. Kamocka and S. Winfree for their assistance in microscopy. This article is dedicated to the memory of M.W. Davidson.

Author information

Authors and Affiliations

Authors

Contributions

R.N.D. and K.W.D. wrote the manuscript. W.T. conducted the experiments, and R.N.D and K.W.D. supervised the research.

Corresponding author

Correspondence to Richard N Day.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

Sequence archive: DNA sequence information for plasmids used in this protocol (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, R., Tao, W. & Dunn, K. A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy. Nat Protoc 11, 2066–2080 (2016). https://doi.org/10.1038/nprot.2016.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.121

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing