Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro

Abstract

Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maintenance and stepwise protocol for myogenic differentiation in vitro and phase-contrast images of differentiating cultures (Steps 1–25).
Figure 2: Immunophenotyping of hPSC-derived myogenic cultures (Steps 26–36).
Figure 3: Subculturing of hPSC-derived myogenic culture (Steps 37–54).
Figure 4: Immunophenotyping of myogenic subcultures (Steps 26–36).
Figure 5: Example of downstream applications for hPSC-derived myogenic cultures.

Similar content being viewed by others

References

  1. Chal, J. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962–969 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Rohwedel, J. et al. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Wobus, A.M. Potential of embryonic stem cells. Mol. Aspects Med. 22, 149–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Greco, T.L. et al. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev. 10, 313–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Aulehla, A. et al. A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10, 186–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Dunty, W.C. Jr. et al. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135, 85–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Yamaguchi, T.P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A.P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chal, J. & Pourquie, O. Patterning and differentiation of the vertebrate spine. Cold Spring Harb. Monograph 41–116 http://dx.doi.org/10.1101/087969825.53.41 (2009).

  9. Yoshikawa, Y., Fujimori, T., McMahon, A.P. & Takada, S. Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev. Biol. 183, 234–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, D.L., Agulnik, I., Hancock, S., Silver, L.M. & Papaioannou, V.E. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180, 534–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Galceran, J., Farinas, I., Depew, M.J., Clevers, H. & Grosschedl, R. Wnt3a-/--like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes Dev. 13, 709–717 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindsley, R.C., Gill, J.G., Kyba, M., Murphy, T.L. & Murphy, K.M. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133, 3787–3796 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Gadue, P., Huber, T.L., Paddison, P.J. & Keller, G.M. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 16806–16811 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135, 2969–2979 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Nakanishi, M. et al. Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. FASEB J. 23, 114–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, C. et al. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155, 909–921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Borchin, B., Chen, J. & Barberi, T. Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Rep. 1, 620–631 (2013).

    Article  CAS  Google Scholar 

  18. Shelton, M. et al. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Rep. 3, 516–529 (2014).

    Article  CAS  Google Scholar 

  19. Hwang, Y. et al. WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Sci. Rep. 4, 5916 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Geetha-Loganathan, P., Nimmagadda, S., Scaal, M., Huang, R. & Christ, B. Wnt signaling in somite development. Ann. Anat. 190, 208–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Tonegawa, A., Funayama, N., Ueno, N. & Takahashi, Y. Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124, 1975–1984 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Hirsinger, E. et al. Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124, 4605–4614 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. McMahon, J.A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reshef, R., Maroto, M. & Lassar, A.B. Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev. 12, 290–303 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Streit, A. & Stern, C.D. Mesoderm patterning and somite formation during node regression: differential effects of chordin and noggin. Mech. Dev. 85, 85–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Miura, S., Davis, S., Klingensmith, J. & Mishina, Y. BMP signaling in the epiblast is required for proper recruitment of the prospective paraxial mesoderm and development of the somites. Development 133, 3767–3775 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Sela-Donenfeld, D. & Kalcheim, C. Localized BMP4-noggin interactions generate the dynamic patterning of noggin expression in somites. Dev. Biol. 246, 311–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Umeda, K. et al. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci. Rep. 2, 455 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Adelman, C.A., Chattopadhyay, S. & Bieker, J.J. The BMP/BMPR/Smad pathway directs expression of the erythroid-specific EKLF and GATA1 transcription factors during embryoid body differentiation in serum-free media. Development 129, 539–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Nostro, M.C., Cheng, X., Keller, G.M. & Gadue, P. Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2, 60–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lengerke, C. et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2, 72–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Orlova, V.V., Chuva de Sousa Lopes, S. & Valdimarsdottir, G. BMP-SMAD signaling: from pluripotent stem cells to cardiovascular commitment. Cytokine Growth Factor Rev. 27, 55–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Vivarelli, E. & Cossu, G. Neural control of early myogenic differentiation in cultures of mouse somites. Dev. Biol. 117, 319–325 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Cossu, G., Kelly, R., Di Donna, S., Vivarelli, E. & Buckingham, M. Myoblast differentiation during mammalian somitogenesis is dependent upon a community effect. Proc. Natl. Acad. Sci. USA 92, 2254–2258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buffinger, N. & Stockdale, F.E. Myogenic specification of somites is mediated by diffusible factors. Dev. Biol. 169, 96–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Rong, P.M., Teillet, M.A., Ziller, C. & Le Douarin, N.M. The neural tube/notochord complex is necessary for vertebral but not limb and body wall striated muscle differentiation. Development 115, 657–672 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Miller, J.B., Everitt, E.A., Smith, T.H., Block, N.E. & Dominov, J.A. Cellular and molecular diversity in skeletal muscle development: news from in vitro and. Bioessays 15, 191–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Neville, C., Rosenthal, N., McGrew, M., Bogdanova, N. & Hauschka, S. Skeletal muscle cultures. Methods Cell Biol. 52, 85–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Danoviz, M.E. & Yablonka-Reuveni, Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol. Biol. 798, 21–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller, J.B. & Stockdale, F.E. Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains. Proc. Natl. Acad. Sci. USA 83, 3860–3864 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rutz, R. & Hauschka, S. Clonal analysis of vertebrate myogenesis. VII. Heritability of muscle colony type through sequential subclonal passages in vitro. Dev. Biol. 91, 103–110 (1982).

    Article  CAS  PubMed  Google Scholar 

  44. Lian, X. et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Rep. 3, 804–816 (2014).

    Article  CAS  Google Scholar 

  45. Tesar, P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Shelton, M., Kocharyan, A., Liu, J., Skerjanc, I.S. & Stanford, W.L. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells. Methods 101, 73–84 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Mahmood, A., Harkness, L., Schroder, H.D., Abdallah, B.M. & Kassem, M. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J. Bone Miner. Res. 25, 1216–1233 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Hosoyama, T., McGivern, J.V., Van Dyke, J.M., Ebert, A.D. & Suzuki, M. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl. Med. 3, 564–574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maffioletti, S.M. et al. Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nat. Protoc. 10, 941–958 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Shoji, E., Woltjen, K. & Sakurai, H. Directed myogenic differentiation of human induced pluripotent stem cells. Methods Mol. Biol. 1353, 89–99 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Albini, S. & Puri, P.L. Generation of myospheres from hESCs by epigenetic reprogramming. J. Vis. Exp. 88, e51243 (2014).

    Google Scholar 

  52. Gerli, M.F., Maffioletti, S.M., Millet, Q. & Tedesco, F.S. Transplantation of induced pluripotent stem cell-derived mesoangioblast-like myogenic progenitors in mouse models of muscle regeneration. J. Vis. Exp. 83, e50532 (2014).

    Google Scholar 

  53. Darabi, R. & Perlingeiro, R.C. Derivation of skeletal myogenic precursors from human pluripotent stem cells using conditional expression of PAX7. Methods Mol. Biol. 1357, 423–439 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Stavropoulos, M.E., Mengarelli, I. & Barberi, T. Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Curr. Protoc. Stem Cell Biol. Chapter 1, Unit 1F 8 (2009).

    PubMed  Google Scholar 

  55. Filareto, A. et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat. Commun. 4, 1549 (2013).

    Article  PubMed  CAS  Google Scholar 

  56. Quattrocelli, M. et al. Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs. J. Pathol. 223, 593–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Barberi, T. et al. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat. Med. 13, 642–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Beers, J. et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 7, 2029–2040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baharvand, H., Salekdeh, G.H., Taei, A. & Mollamohammadi, S. An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat. Protoc. 5, 588–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Marti, M. et al. Characterization of pluripotent stem cells. Nat. Protoc. 8, 223–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz, P.H., Brick, D.J., Nethercott, H.E. & Stover, A.E. Traditional human embryonic stem cell culture. Methods Mol. Biol. 767, 107–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, S. & Talbot, P. Methods for culturing mouse and human embryonic stem cells. Methods Mol. Biol. 690, 31–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. van den Brink, S.C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rohwedel, J., Guan, K., Hegert, C. & Wobus, A.M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicology In Vitro 15, 741–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Giobbe, G.G. et al. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 12, 637–640 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Park, D., Lim, J., Park, J.Y. & Lee, S.H. Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cells Transl. Med. 4, 1352–1368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ostrovidov, S. et al. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B Rev. 20, 403–436 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cheng, C.W., Solorio, L.D. & Alsberg, E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol. Adv. 32, 462–484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dennis, R.G. & Kosnik, P.E. II. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell. Dev. Biol. Anim. 36, 327–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Bian, W. & Bursac, N. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 30, 1401–1412 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Juhas, M. & Bursac, N. Engineering skeletal muscle repair. Curr. Opin. Biotechnol. 24, 880–886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakar, M.S. et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12, 4976–4985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neal, D., Sakar, M.S., Ong, L.L. & Harry Asada, H. Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab Chip 14, 1907–1916 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Grosberg, A. et al. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J. Pharmacol. Toxicol. Methods 65, 126–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Benam, K.H. et al. Engineered in vitro disease models. Ann. Rev. Pathol. 10, 195–262 (2015).

    Article  CAS  Google Scholar 

  77. Vandenburgh, H. Functional assessment and tissue design of skeletal muscle. Ann. NY Acad. Sci. 961, 201–202 (2002).

    Article  PubMed  Google Scholar 

  78. Vandenburgh, H., Shansky, J., Del Tatto, M. & Chromiak, J. Organogenesis of skeletal muscle in tissue culture. Methods Mol. Med. 18, 217–225 (1999).

    CAS  PubMed  Google Scholar 

  79. Vandenburgh, H. et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. FASEB J. 23, 3325–3334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vandenburgh, H. et al. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37, 438–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Demestre, M. et al. Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes. Stem Cell Res. 15, 328–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Das, M., Rumsey, J.W., Bhargava, N., Stancescu, M. & Hickman, J.J. Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials 30, 5392–5402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Das, M., Rumsey, J.W., Bhargava, N., Stancescu, M. & Hickman, J.J. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials 31, 4880–4888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo, X. et al. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system. Tissue Eng. Part C Methods 16, 1347–1355 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Askanas, V. et al. Accumulation of CK-MM is impaired in innervated and contracting cultured muscle fibers of Duchenne muscular dystrophy patients. Life Sci. 41, 927–933 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Smith, A.S., Long, C.J., Pirozzi, K. & Hickman, J.J. A functional system for high-content screening of neuromuscular junctions. Technology 1, 37–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thomson, S.R. et al. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PloS One 7, e52605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Puttonen, K.A. et al. Generation of functional neuromuscular junctions from human pluripotent stem cell lines. Front. Cell. Neurosci. 9, 473 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rohwedel, J. et al. Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro. Exp. Cell Res. 239, 214–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Kostrominova, T.Y., Calve, S., Arruda, E.M. & Larkin, L.M. Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro. Histol. Histopathol. 24, 541–550 (2009).

    PubMed  PubMed Central  Google Scholar 

  91. Lui, P.P. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning 7, 163–174 (2015).

    Google Scholar 

  92. Juhas, M., Engelmayr, G.C. Jr., Fontanella, A.N., Palmer, G.M. & Bursac, N. Biomimetic engineered muscle with capacity for vascular integration and functional maturation. Proc. Natl. Acad. Sci. USA 111, 5508–5513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gholobova, D. et al. Endothelial network formation within human tissue-engineered skeletal muscle. Tissue Eng. Part A 21, 2548–2558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carosio, S. et al. Generation of eX vivo-vascularized Muscle Engineered Tissue (X-MET). Sci. Rep. 3, 1420 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Dodson, M.V., Vierck, J.L., Hossner, K.L., Byrne, K. & McNamara, J.P. The development and utility of a defined muscle and fat co-culture system. Tissue Cell 29, 517–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Shoji, E. et al. Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. Sci. Rep. 5, 12831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abujarour, R. et al. Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Transl. Med. 3, 149–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yasuno, T. et al. Functional analysis of iPSC-derived myocytes from a patient with carnitine palmitoyltransferase II deficiency. Biochem. Biophys. Res. Commun. 448, 175–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Tanaka, A. et al. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PloS One 8, e61540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kawagoe, S. et al. Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells. Mol. Genet. Metab. 104, 123–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Young, C.S. et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18, 533–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tran, T., Andersen, R., Sherman, S.P. & Pyle, A.D. Insights into skeletal muscle development and applications in regenerative medicine. Int. Rev. Cell Mol. Biol. 300, 51–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Li, H.L. et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4, 143–154 (2015).

    Article  CAS  Google Scholar 

  105. Yokota, T., Pistilli, E., Duddy, W. & Nagaraju, K. Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 7, 831–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Kazuki, Y. et al. Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol. Ther. 18, 386–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. van Deutekom, J.C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. New Engl. J. Med. 357, 2677–2686 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Skuk, D. & Tremblay, J.P. Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opin. Biol. Ther. 11, 359–374 (2011).

    Article  PubMed  Google Scholar 

  109. Ostrovidov, S. et al. Stem cell differentiation toward the myogenic lineage for muscle tissue regeneration: a focus on muscular dystrophy. Stem Cell Rev. 11, 866–884 (2015).

    Article  CAS  Google Scholar 

  110. Bursac, N., Juhas, M. & Rando, T.A. Synergizing engineering and biology to treat and model skeletal muscle injury and disease. Ann. Rev. Biomed. Eng. 17, 217–242 (2015).

    Article  CAS  Google Scholar 

  111. Liao, H. & Zhou, G.Q. Development and progress of engineering of skeletal muscle tissue. Tissue Eng. Part B Rev. 15, 319–331 (2009).

    Article  PubMed  Google Scholar 

  112. Koning, M., Harmsen, M.C., van Luyn, M.J. & Werker, P.M. Current opportunities and challenges in skeletal muscle tissue engineering. J. Tissue Eng. Regen. Med. 3, 407–415 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Tourovskaia, A., Figueroa-Masot, X. & Folch, A. Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation. Nat. Protoc. 1, 1092–1104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reimann, J. et al. Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res. 315, 233–242 (2004).

    Article  PubMed  Google Scholar 

  115. Kottlors, M. & Kirschner, J. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res. 340, 541–548 (2010).

    Article  PubMed  Google Scholar 

  116. Lepper, C., Partridge, T.A. & Fan, C.M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roca, I., Requena, J., Edel, M.J. & Alvarez-Palomo, A.B. Myogenic precursors from iPS cells for skeletal muscle cell replacement therapy. J. Clin. Med. 4, 243–259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mendell, J.R. et al. Myoblast transfer in the treatment of Duchenne's muscular dystrophy. New Engl. J. Med. 333, 832–838 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Rando, T.A., Pavlath, G.K. & Blau, H.M. The fate of myoblasts following transplantation into mature muscle. Exp. Cell Res. 220, 383–389 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Gussoni, E., Blau, H.M. & Kunkel, L.M. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat. Med. 3, 970–977 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Collins, C.A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H.M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boldrin, L. & Morgan, J.E. Human satellite cells: identification on human muscle fibres. PLoS Curr. 3, RRN1294 (2011).

    Google Scholar 

  127. Marg, A. et al. Human satellite cells have regenerative capacity and are genetically manipulable. J. Clin. Invest. 124, 4257–4265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu, X. et al. Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Rep. 5, 419–434 (2015).

    Article  CAS  Google Scholar 

  129. Gilbert, P.M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tierney, M.T. et al. Autonomous extracellular matrix remodeling controls a progressive adaptation in muscle stem cell regenerative capacity during development. Cell Rep. 1–13 (2016).

  131. Charville, G.W. et al. Ex vivo expansion and in vivoself-renewal of human muscle stem cells. Stem Cell Rep. 5, 621–632 (2015).

    Article  CAS  Google Scholar 

  132. Meng, J., Adkin, C.F., Xu, S.W., Muntoni, F. & Morgan, J.E. Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PloS One 6, e17454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tajbakhsh, S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 266, 372–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Baker, R.K. & Lyons, G.E. Embryonic stem cells and in vitro muscle development. Curr. Top. Dev. Biol. 33, 263–279 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Darabi, R., Santos, F.N. & Perlingeiro, R.C. The therapeutic potential of embryonic and adult stem cells for skeletal muscle regeneration. Stem Cell Rev. 4, 217–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Salani, S. et al. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J. Cell. Mol. Med. 16, 1353–1364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vilquin, J.T. Converting pathological cells to therapeutic ones: an odyssey through pluripotency. Mol. Ther. 20, 2012–2014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Swierczek, B., Ciemerych, M.A. & Archacka, K. From pluripotency to myogenesis: a multistep process in the dish. J. Muscle Res. Cell Motil. 36, 363–375 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Grabowska, I., Archacka, K., Czerwinska, A.M., Krupa, M. & Ciemerych, M.A. Mouse and human pluripotent stem cells and the means of their myogenic differentiation. Results Probl. Cell Differ. 55, 321–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Wilschut, K.J., Ling, V.B. & Bernstein, H.S. Concise review: stem cell therapy for muscular dystrophies. Stem Cells Transl. Med. 1, 833–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abujarour, R. & Valamehr, B. Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Front. Cell Dev. Biol. 3, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dekel, I., Magal, Y., Pearson-White, S., Emerson, C.P. & Shani, M. Conditional conversion of ES cells to skeletal muscle by an exogenous MyoD1 gene. New Biol. 4, 217–224 (1992).

    CAS  PubMed  Google Scholar 

  143. Shani, M. et al. The consequences of a constitutive expression of MyoD1 in ES cells and mouse embryos. Symp. Soc. Exp. Biol. 46, 19–36 (1992).

    CAS  PubMed  Google Scholar 

  144. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Comai, G. & Tajbakhsh, S. Molecular and cellular regulation of skeletal myogenesis. Curr. Top. Dev. Biol. 110, 1–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Darabi, R. et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med. 14, 134–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Rao, L. et al. Highly efficient derivation of skeletal myotubes from human embryonic stem cells. Stem Cell Rev. 8, 1109–1119 (2012).

    Article  Google Scholar 

  148. Goudenege, S. et al. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol. Ther. 20, 2153–2167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Albini, S. et al. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep. 3, 661–670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Darabi, R. et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10, 610–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fougerousse, F. et al. Six and Eya expression during human somitogenesis and MyoD gene family activation. J. Muscle Res. Cell Motil. 23, 255–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Goulding, M.D., Chalepakis, G., Deutsch, U., Erselius, J.R. & Gruss, P. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 10, 1135–1147 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jostes, B., Walther, C. & Gruss, P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 33, 27–37 (1990).

    Article  CAS  PubMed  Google Scholar 

  154. Gerard, M. et al. PAX-genes expression during human embryonic development, a preliminary report. C R Acad Sci III 318, 57–66 (1995).

    CAS  PubMed  Google Scholar 

  155. Terzic, J. & Saraga-Babic, M. Expression pattern of PAX3 and PAX6 genes during human embryogenesis. Int. J. Dev. Biol. 43, 501–508 (1999).

    CAS  PubMed  Google Scholar 

  156. Skoglund, G. et al. Physiological and ultrastructural features of human induced pluripotent and embryonic stem cell-derived skeletal myocytes in vitro. Proc. Natl. Acad. Sci. USA 111, 8275–8280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Peault, B. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15, 867–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Dellavalle, A. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9, 255–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Tedesco, F.S. et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Science Transl. Med. 4, 140ra189 (2012).

    Article  CAS  Google Scholar 

  161. Moretti, A., Laugwitz, K.L., Dorn, T., Sinnecker, D. & Mummery, C. Pluripotent stem cell models of human heart disease. Cold Spring Harbor Perspectives in Medicine 3, a014027 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Robertson, C., Tran, D.D. & George, S.C. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Bock, C. et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Boulting, G.L. et al. A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29, 279–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Halme, D.G. & Kessler, D.A. FDA regulation of stem-cell-based therapies. New Engl. J. Med. 355, 1730–1735 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Vandenburgh, H. High-content drug screening with engineered musculoskeletal tissues. Tissue Eng. Part B Rev. 16, 55–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Desbordes, S.C. & Studer, L. Adapting human pluripotent stem cells to high-throughput and high-content screening. Nat. Protoc. 8, 111–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Kleinman, H.K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  170. Hauschka, S.D. & Konigsberg, I.R. The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci. USA 55, 119–126 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kuhl, U., Ocalan, M., Timpl, R. & von der Mark, K. Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle cells in vitro. Dev. Biol. 117, 628–635 (1986).

    Article  CAS  PubMed  Google Scholar 

  172. von der Mark, K. & Ocalan, M. Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation 40, 150–157 (1989).

    Article  CAS  PubMed  Google Scholar 

  173. Maley, M.A., Davies, M.J. & Grounds, M.D. Extracellular matrix, growth factors, genetics: their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp. Cell Res. 219, 169–179 (1995).

    Article  CAS  PubMed  Google Scholar 

  174. Pinset, C. & Whalen, R.G. Induction of myogenic differentiation in serum-free medium does not require DNA synthesis. Dev. Biol. 108, 284–289 (1985).

    Article  CAS  PubMed  Google Scholar 

  175. Goto, S., Miyazaki, K., Funabiki, T. & Yasumitsu, H. Serum-free culture conditions for analysis of secretory proteinases during myogenic differentiation of mouse C2C12 myoblasts. Anal. Biochem. 272, 135–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Reiss, K. & Korohoda, W. The formation of myotubes in cultures of chick embryo myogenic cells in serum-free medium is induced by the insulin pulse treatment. Folia Histochem. Cytobiol. 26, 133–141 (1988).

    CAS  PubMed  Google Scholar 

  177. Herrmann, B.G., Labeit, S., Poustka, A., King, T.R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990).

    Article  CAS  PubMed  Google Scholar 

  178. Kispert, A. & Herrmann, B.G. Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev. Biol. 161, 179–193 (1994).

    Article  PubMed  Google Scholar 

  179. Yoon, J.K. & Wold, B. The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev. 14, 3204–3214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yoon, J.K., Moon, R.T. & Wold, B. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev. Biol. 222, 376–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Sassoon, D. et al. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341, 303–307 (1989).

    Article  CAS  PubMed  Google Scholar 

  182. Braun, T. & Arnold, H.H. ES-cells carrying two inactivated myf-5 alleles form skeletal muscle cells: activation of an alternative myf-5-independent differentiation pathway. Dev. Biol. 164, 24–36 (1994).

    Article  CAS  PubMed  Google Scholar 

  183. Yablonka-Reuveni, Z. & Paterson, B.M. MyoD and myogenin expression patterns in cultures of fetal and adult chicken myoblasts. J. Histochem. Cytochem. 49, 455–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Lyons, G.E., Ontell, M., Cox, R., Sassoon, D. & Buckingham, M. The expression of myosin genes in developing skeletal muscle in the mouse embryo. J. Cell Biol. 111, 1465–1476 (1990).

    Article  CAS  PubMed  Google Scholar 

  185. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Zammit, P.S. et al. Pax7 and myogenic progression in skeletal muscle satellite cells. J. Cell Sci. 119, 1824–1832 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. McCain, M.L., Agarwal, A., Nesmith, H.W., Nesmith, A.P. & Parker, K.K. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35, 5462–5471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pasqualini, F.S., Sheehy, S.P., Agarwal, A., Aratyn-Schaus, Y. & Parker, K.K. Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Rep. 4, 340–347 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all coauthors of the original article describing this technology for their initial support and contribution. We thank G. Guevara for lab assistance. We thank C. Fugier and F. Bousson for comments and feedback. We are grateful to L. Daheron and members of the Pourquié laboratory for comments. We thank A. Freismuth and M. Humbert from the IGBMC cell culture service for hiPSC culture assistance. This work was supported by an advanced grant from the European Research Council to O.P., by the FP7 EU grant Plurimes (agreement no. 602423 to O.P.), by a strategic grant from the French Muscular Dystrophy Association (AFM) to O.P. and by the INGESTEM project (ANR).

Author information

Authors and Affiliations

Authors

Contributions

J.C. and Z.A.T. designed and performed the experiments and protocol optimizations, analyzed data and coordinated the project. M.H. and S.A. carried out hPSC differentiation and protocol optimization under the supervision of J.C. B.G. carried out some hPSC optimization experiments under the supervision of Z.A.T. A.H. contributed to hPSC cell culture analysis and data interpretation. T.C. contributed to hPSC culture differentiation and analysis. A.P.N. manufactured micropatterned substrates and performed the fiber structural analysis. K.K.P. provided expertise. O.P. supervised the overall project. J.C., Z.A.T. and O.P. performed the final data analysis and wrote the manuscript.

Corresponding author

Correspondence to Olivier Pourquié.

Ethics declarations

Competing interests

The work described in this article is partially covered by patent application no. PCT/EP2012/066793 (publication no. WO2013030243 A1). O.P. and J.C. are cofounders and shareholders of Anagenesis Biotechnologies, a startup company specializing in the production of muscle cells in vitro for cell therapy and drug screening.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chal, J., Al Tanoury, Z., Hestin, M. et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 11, 1833–1850 (2016). https://doi.org/10.1038/nprot.2016.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.110

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing