Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-quality full-length immunoglobulin profiling with unique molecular barcoding

Abstract

High-throughput sequencing analysis of hypermutating immunoglobulin (IG) repertoires remains a challenging task. Here we present a robust protocol for the full-length profiling of human and mouse IG repertoires. This protocol uses unique molecular identifiers (UMIs) introduced in the course of cDNA synthesis to control bottlenecks and to eliminate PCR and sequencing errors. Using asymmetric 400+100-nt paired-end Illumina sequencing and UMI-based assembly with the new version of the MIGEC software, the protocol allows up to 750-nt lengths to be sequenced in an almost error-free manner. This sequencing approach should also be applicable to various tasks beyond immune repertoire studies. In IG profiling, the achieved length of high-quality sequence covers the variable region of even the longest chains, along with the fragment of a constant region carrying information on the antibody isotype. The whole protocol, including preparation of cells and libraries, sequencing and data analysis, takes 5 to 6 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Base quality score heatmaps across the template length for three data pre-processing strategies.
Figure 2: Logic of the asymmetric paired-end sequencing strategy and data analysis with UMIs.
Figure 3: Replicate sample analysis.
Figure 4: Scheme of the cDNA library preparation and sequencing (Steps 6–22).
Figure 5: Required cDNA sequencing coverage.

Similar content being viewed by others

References

  1. Robins, H.S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114, 4099–4107 (2009).

    Article  CAS  Google Scholar 

  2. Freeman, J.D., Warren, R.L., Webb, J.R., Nelson, B.H. & Holt, R.A. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    Article  CAS  Google Scholar 

  3. Mamedov, I.Z. et al. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol. Med. 3, 201–207 (2011).

    Article  CAS  Google Scholar 

  4. Warren, R.L. et al. Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res. 21, 790–797 (2011).

    Article  CAS  Google Scholar 

  5. Vollmers, C., Sit, R.V., Weinstein, J.A., Dekker, C.L. & Quake, S.R. Genetic measurement of memory B-cell recall using antibody repertoire sequencing. Proc. Natl. Acad. Sci. USA 110, 13463–13468 (2013).

    Article  CAS  Google Scholar 

  6. Jiang, N. et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5, 171ra119 (2013).

    Article  Google Scholar 

  7. Laserson, U. et al. High-resolution antibody dynamics of vaccine-induced immune responses. Proc. Natl. Acad. Sci. USA 111, 4928–4933 (2014).

    Article  CAS  Google Scholar 

  8. Kaplinsky, J. et al. Antibody repertoire deep sequencing reveals antigen-independent selection in maturing B cells. Proc. Natl. Acad. Sci. USA 111, E2622–2629 (2014).

    Article  CAS  Google Scholar 

  9. Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).

    Article  CAS  Google Scholar 

  10. Weinstein, J.A., Jiang, N., White, R.A., Fischer, D.S. & Quake, S.R. High-throughput sequencing of the zebrafish antibody repertoire. Science 324, 807–810 (2009).

    Article  CAS  Google Scholar 

  11. Mora, T., Walczak, A.M., Bialek, W. & Callan, C.G. Jr. Maximum entropy models for antibody diversity. Proc. Natl. Acad. Sci. USA 107, 5405–5410 (2010).

    Article  CAS  Google Scholar 

  12. Jiang, N. et al. Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc. Natl. Acad. Sci. USA 108, 5348–5353 (2011).

    Article  CAS  Google Scholar 

  13. Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. PLoS One 7, e49774 (2012).

    Article  CAS  Google Scholar 

  14. Parameswaran, P. et al. Convergent antibody signatures in human dengue. Cell Host Microbe 13, 691–700 (2013).

    Article  CAS  Google Scholar 

  15. Tan, Y.C. et al. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin. Immunol. 151, 55–65 (2014).

    Article  CAS  Google Scholar 

  16. Galson, J.D. et al. BCR repertoire sequencing: different patterns of B-cell activation after two Meningococcal vaccines. Immunol. Cell Biol. 93, 885–895 (2015).

    Article  CAS  Google Scholar 

  17. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K.W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA 108, 9530–9535 (2011).

    Article  Google Scholar 

  18. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    Article  CAS  Google Scholar 

  19. Britanova, O.V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).

    Article  CAS  Google Scholar 

  20. Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).

    Article  CAS  Google Scholar 

  21. He, L. et al. Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci. Rep. 4, 6778 (2014).

    Article  CAS  Google Scholar 

  22. Egorov, E.S. et al. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J. Immunol. 194, 6155–6163 (2015).

    Article  CAS  Google Scholar 

  23. Khan, T.A. et al. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting. Sci. Adv. 2, e1501371 (2016).

    Article  Google Scholar 

  24. Bolotin, D.A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    Article  CAS  Google Scholar 

  25. Briney, B.S., Willis, J.R., McKinney, B.A. & Crowe, J.E. Jr. High-throughput antibody sequencing reveals genetic evidence of global regulation of the naive and memory repertoires that extends across individuals. Genes Immun. 13, 469–473 (2012).

    Article  CAS  Google Scholar 

  26. Larimore, K., McCormick, M.W., Robins, H.S. & Greenberg, P.D. Shaping of human germline IgH repertoires revealed by deep sequencing. J. Immunol. 189, 3221–3230 (2012).

    Article  CAS  Google Scholar 

  27. Wu, Y.C. et al. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070–1078 (2010).

    Article  CAS  Google Scholar 

  28. Siegrist, C.A. & Aspinall, R. B-cell responses to vaccination at the extremes of age. Nat. Rev. Immunol. 9, 185–194 (2009).

    Article  CAS  Google Scholar 

  29. Wang, C. et al. Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J. Immunol. 192, 603–611 (2014).

    Article  CAS  Google Scholar 

  30. Tan, Y.C. et al. Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis Rheumatol. 66, 2706–2715 (2014).

    Article  CAS  Google Scholar 

  31. Doorenspleet, M.E. et al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann. Rheum. Dis. 73, 756–762 (2014).

    Article  CAS  Google Scholar 

  32. Racanelli, V. et al. Antibody V(h) repertoire differences between resolving and chronically evolving hepatitis C virus infections. PLoS One 6, e25606 (2011).

    Article  CAS  Google Scholar 

  33. Ademokun, A. et al. Vaccination-induced changes in human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages. Aging Cell 10, 922–930 (2011).

    Article  CAS  Google Scholar 

  34. Tschumper, R.C. et al. Comprehensive assessment of potential multiple myeloma immunoglobulin heavy chain V-D-J intraclonal variation using massively parallel pyrosequencing. Oncotarget 3, 502–513 (2012).

    Article  Google Scholar 

  35. Fridy, P.C. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11, 1253–1260 (2014).

    Article  CAS  Google Scholar 

  36. Lu, D.R. et al. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clin. Immunol. 152, 77–89 (2014).

    Article  CAS  Google Scholar 

  37. Lavinder, J.J. et al. Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc. Natl. Acad. Sci. USA 111, 2259–2264 (2014).

    Article  CAS  Google Scholar 

  38. Briney, B.S., Willis, J.R. & Crowe, J.E. Jr. Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS One 7, e36750 (2012).

    Article  CAS  Google Scholar 

  39. Yu, L. & Guan, Y. Immunologic basis for long HCDR3s in broadly neutralizing antibodies against HIV-1. Front. Immunol. 5, 250 (2014).

    Article  Google Scholar 

  40. Nguyen, P. et al. Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire. BMC Genomics 12, 106 (2011).

    Article  CAS  Google Scholar 

  41. Bolotin, D.A. et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur. J. Immunol. 42, 3073–3083 (2012).

    Article  CAS  Google Scholar 

  42. Brodin, J. et al. PCR-induced transitions are the major source of error in cleaned ultra-deep pyrosequencing data. PLoS One 8, e70388 (2013).

    Article  CAS  Google Scholar 

  43. Brodin, J. et al. Challenges with using primer IDs to improve accuracy of next generation sequencing. PLoS One 10, e0119123 (2015).

    Article  Google Scholar 

  44. Yaari, G. & Kleinstein, S.H. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med. 7, 121 (2015).

    Article  Google Scholar 

  45. Elnifro, E.M., Ashshi, A.M., Cooper, R.J. & Klapper, P.E. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13, 559–570 (2000).

    Article  CAS  Google Scholar 

  46. Markoulatos, P., Siafakas, N. & Moncany, M. Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal. 16, 47–51 (2002).

    Article  CAS  Google Scholar 

  47. Carlson, C.S. et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat. Commun. 4, 2680 (2013).

    Article  Google Scholar 

  48. van Dijk, E.L., Jaszczyszyn, Y. & Thermes, C. Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res. 322, 12–20 (2014).

    Article  CAS  Google Scholar 

  49. Schrum, A.G., Turka, L.A. & Palmer, E. Surface T-cell antigen receptor expression and availability for long-term antigenic signaling. Immunol. Rev. 196, 7–24 (2003).

    Article  CAS  Google Scholar 

  50. Cho, B.K., Wang, C., Sugawa, S., Eisen, H.N. & Chen, J. Functional differences between memory and naive CD8 T cells. Proc. Natl. Acad. Sci. USA 96, 2976–2981 (1999).

    Article  CAS  Google Scholar 

  51. Schrum, A.G., Wells, A.D. & Turka, L.A. Enhanced surface TCR replenishment mediated by CD28 leads to greater TCR engagement during primary stimulation. Int. Immunol. 12, 833–842 (2000).

    Article  CAS  Google Scholar 

  52. Shi, W. et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol. 16, 663–673 (2015).

    Article  CAS  Google Scholar 

  53. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).

    Article  CAS  Google Scholar 

  54. Franz, B., May, K.F. Jr., Dranoff, G. & Wucherpfennig, K. Ex vivo characterization and isolation of rare memory B cells with antigen tetramers. Blood 118, 348–357 (2011).

    Article  CAS  Google Scholar 

  55. Kuenz, B. et al. Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis. PLoS One 3, e2559 (2008).

    Article  Google Scholar 

  56. Greiff, V. et al. Quantitative assessment of the robustness of next-generation sequencing of antibody variable gene repertoires from immunized mice. BMC Immunology 15, 40 (2014).

    Article  Google Scholar 

  57. Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560 (1999).

    Article  CAS  Google Scholar 

  58. Douek, D.C. et al. A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J. Immunol. 168, 3099–3104 (2002).

    Article  CAS  Google Scholar 

  59. Feng, Y. et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 528, 132–136 (2015).

    Article  CAS  Google Scholar 

  60. Shugay, M. et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015).

    Article  Google Scholar 

  61. Jaatinen, T. & Laine, J. Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient. Curr. Protoc. Stem Cell Biol. Chapter 2 Unit 2A 1, http://dx.doi.org/10.1002/9780470151808.sc02a01s1 (2007).

  62. Sims, G.P. & Lipsky, P.E. Isolation of human B cell populations. Curr. Protoc. Immunol. Chapter 7 Unit 7 5, http://dx.doi.org/10.1002/0471142735.im0705s75 (2006).

  63. Kjeldsen, M.K. et al. Multiparametric flow cytometry for identification and fluorescence activated cell sorting of five distinct B-cell subpopulations in normal tonsil tissue. Am. J. Clin. Pathol. 136, 960–969 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation project no. 14-14-00533. The work was carried out in part using equipment provided by the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Core Facility (CKP IBCH). M.S. is supported by an individual fellowship (mol-a-dk RFBR grant 16-34-60179). A.D., V.B., K.P. and S.P. are supported by the Ministry of Education, Youth and Sports of the Czech Republic (CEITEC 2020, LQ1601). K.P., V.B. and S.P. are supported by Ministry of Health, Czech Republic (AZV 15-30015A).

Author information

Authors and Affiliations

Authors

Contributions

M.A.T., O.V.B., V.B., V.I.K., E.M.M., I.Z.M. and K.P. prepared the cDNA libraries and worked on the protocol. E.S.E., D.B.S. and O.K. worked on cell sample preparation. A.D. and M.D.L. worked on sequencing. M.A.T., O.V.B. and D.M.C. designed the experiments. A.D., M.S., D.A.B., M.I., S.P. and D.M.C. worked on data analysis and manuscript preparation.

Corresponding author

Correspondence to D M Chudakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Title: Experimental datasets. Examples of full-length IGH profiling for the samples of human naive, plasma and memory B cells (XLSX 11235 kb)

Supplementary Table 2

Title: Control datasets. Full-length IGH profiling for the control set of CLL clones (XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchaninova, M., Davydov, A., Britanova, O. et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc 11, 1599–1616 (2016). https://doi.org/10.1038/nprot.2016.093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.093

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing