Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using Raman spectroscopy to characterize biological materials

Abstract

Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic identifying light scattering after laser exposure on a sample surface.
Figure 2: Raman microspectroscopy workflow diagram highlighting the key aspects of experimental design including instrumentation, sample preparation, spectral acquisition and data processing with representative examples.
Figure 3: Generalized overview of instrumentation options within a typical spontaneous Raman spectroscopic microscope system.
Figure 4: Simplified overview of the effect of laser excitation wavelength on the fluorescence background.
Figure 5: Raman spectra derived from blood serum containing 150- and 40-nm diameter gold nanospheres, and a control sample containing no SERS substrates.
Figure 6: Examples of common troubleshooting issues during spectral acquisition.
Figure 7: A brief overview of pre-processing options in Raman spectral data analysis and their contribution to spectral transformation using an example spectrum from a tomato plant leaflet.
Figure 8: Raman map of fixed endometrial tissue, focusing on uterine glands that spiral throughout the tissue.

Similar content being viewed by others

References

  1. Clemens, G., Hands, J.R., Dorling, K.M. & Baker, M.J. Vibrational spectroscopic methods for cytology and cellular research. Analyst 139, 4411–4444 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, D.I., Cowcher, D.P., Ashton, L., O'Hagan, S. & Goodacre, R. Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138, 3871–3884 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Downes, A. & Elfick, A. Raman spectroscopy and related techniques in biomedicine. Sensors 10, 1871–1889 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krafft, C. & Popp, J. The many facets of Raman spectroscopy for biomedical analysis. Anal. Bioanal. Chem. 407, 699–717 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Movasaghi, Z., Rehman, S. & Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007).

    Article  CAS  Google Scholar 

  6. Chase, B. A new generation of Raman instrumentation. Appl. Spectrosc. 48, 14–19 (1994).

    Article  Google Scholar 

  7. Zhang, Y., Hong, H. & Cai, W. Imaging with Raman spectroscopy. Curr. Pharm. Biotechnol. 11, 654–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14, R597–R624 (2002).

    Article  CAS  Google Scholar 

  9. Hartschuh, A., Sánchez, E.J., Xie, X.S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. Cooper, J.B. Chemometric analysis of Raman spectroscopic data for process control applications. Chemometr. Intell. Lab. Syst. 46, 231–247 (1999).

    Article  CAS  Google Scholar 

  11. Widjaja, E., Zheng, W. & Huang, Z. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. Int. J. Oncol. 32, 653–662 (2008).

    CAS  PubMed  Google Scholar 

  12. Krafft, C., Steiner, G., Beleites, C. & Salzer, R. Disease recognition by infrared and Raman spectroscopy. J. Biophotonics 2, 13–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Vankeirsbilck, T. et al. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Analyt. Chem. 21, 869–877 (2002).

    Article  CAS  Google Scholar 

  14. Ekins, S. & Sasic, S. Pharmaceutical Applications of Raman Spectroscopy (John Wiley & Sons, 2008).

  15. Frosch, T., Yan, D. & Popp, J. Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs. Anal. Chem. 85, 6264–6271 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Jarvis, R.M. & Goodacre, R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76, 40–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Maquelin, K. et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51, 255–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Neugebauer, U. et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem 7, 1428–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Pahlow, S., Meisel, S., Cialla-May, D., Weber, K. & Röschac, J.P.P. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 89, 105–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Ashton, L., Lau, K., Winder, C.L. & Goodacre, R. Raman spectroscopy: lighting up the future of microbial identification. Future Microbiol. 6, 991–997 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Owen, C.A. et al. In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. J. Cell. Biochem. 99, 178–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Knief, P. et al. Raman spectroscopy—a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity. Analyst 134, 1182–1191 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Mansfield, J.C. et al. Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy. Anal. Chem. 85, 5055–5063 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Baranska, M., Roman, M., Schulz, H. & Baranski, R. Recent advances in Raman analysis of plants: alkaloids, carotenoids, and polyacetylenes. Curr. Anal. Chem. 9, 108–127 (2013).

    Article  CAS  Google Scholar 

  25. Gierlinger, N. & Schwanninger, M. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy 21, 69–89 (2007).

    Article  CAS  Google Scholar 

  26. Kallaway, C. et al. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn. Ther. 10, 207–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Byrne, H.J. et al. Spectropathology for the next generation: Quo vadis? Analyst 140, 2066–2073 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Meyer, T. et al. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J. Biomed. Opt. 16, 021113 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Fullwood, L.M. et al. Investigating the use of Raman and immersion Raman spectroscopy for spectral histopathology of metastatic brain cancer and primary sites of origin. Anal. Methods 6, 3948–3961 (2014).

    Article  CAS  Google Scholar 

  30. Gajjar, K. et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal. Methods 5, 89–102 (2013).

    Article  CAS  Google Scholar 

  31. Krafft, C., Neudert, L., Simat, T. & Salzer, R. Near-infrared Raman spectra of human brain lipids. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 1529–1535 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. Stone, N., Baker, R., Rogers, K., Parker, A.W. & Matousek, P. Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst 132, 899–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Crow, P., Uff, J., Farmer, J., Wright, M. & Stone, N. The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU Int. 93, 1232–1236 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, D. et al. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt. Express 19, 13565–13577 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Dekker, E. & Fockens, P. Advances in colonic imaging: new endoscopic imaging methods. Eur. J. Gastroenterol. Hepatol. 17, 803–808 (2005).

    Article  PubMed  Google Scholar 

  36. Stone, N., Stavroulaki, P., Kendall, C., Birchall, M. & Barr, H. Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110, 1756–1763 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Z. et al. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 107, 1047–1052 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Horsnell, J.D. et al. Raman spectroscopy—a potential new method for the intra-operative assessment of axillary lymph nodes. Surgeon 10, 123–127 (2012).

    Article  PubMed  Google Scholar 

  39. Lloyd, G.R. et al. Discrimination between benign, primary and secondary malignancies in lymph nodes from the head and neck utilising Raman spectroscopy and multivariate analysis. Analyst 138, 3900–3908 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Stone, N., Kendall, C., Shepherd, N., Crow, P. & Barr, H. Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J. Raman Spectrosc. 33, 564–573 (2002).

    Article  CAS  Google Scholar 

  41. Kendall, C. et al. Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett's oesophagus. J. Pathol. 200, 602–609 (2003).

    Article  PubMed  Google Scholar 

  42. Bergholt, M.S. et al. In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling. Technol. Cancer Res. Treat. 10, 103–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Crow, P. et al. Assessment of fiberoptic near-infrared Raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 65, 1126–1130 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Patel, I.I. & Martin, F.L. Discrimination of zone-specific spectral signatures in normal human prostate using Raman spectroscopy. Analyst 135, 3060–3069 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Patel, I.I. et al. Segregation of human prostate tissues classified high-risk (UK) versus low-risk (India) for adenocarcinoma using Fourier-transform infrared or Raman microspectroscopy coupled with discriminant analysis. Anal. Bioanal. Chem. 401, 969–982 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Crow, P. et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br. J. Cancer 89, 106–108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rashid, N. et al. Raman microspectroscopy for the early detection of pre-malignant changes in cervical tissue. Exp. Mol. Pathol. 97, 554–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Patel, I.I. et al. High contrast images of uterine tissue derived using Raman microspectroscopy with the empty modelling approach of multivariate curve resolution-alternating least squares. Analyst 136, 4950–4959 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Krishna, C.M. et al. Raman spectroscopy studies for diagnosis of cancers in human uterine cervix. Vib. Spectrosc. 41, 136–141 (2006).

    Article  CAS  Google Scholar 

  50. Lyng, F.M. et al. Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp. Mol. Pathol. 82, 121–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell, A.L., Gajjar, K.B., Theophilou, G., Martin, F.L. & Martin-Hirsch, P.L. Vibrational spectroscopy of biofluids for disease screening or diagnosis: translation from the laboratory to a clinical setting. J. Biophotonics 7, 153–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Wood, B.R. et al. Raman imaging of hemozoin within the food vacuole of Plasmodium falciparum trophozoites. FEBS Lett. 554, 247–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Wood, B.R. et al. Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett. 11, 1868–1873 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Wood, B.R. & McNaughton, D. Resonance Raman spectroscopy in malaria research. Expert Rev. Proteomics 3, 525–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Wood, B.R. et al. Resonance Raman spectroscopy reveals new insight into the electronic structure of β-hematin and malaria pigment. J. Am. Chem. Soc. 126, 9233–9239 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Bonnier, F. et al. Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy. Analyst 135, 3169–3177 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Notingher, I. & Hench, L.L. Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev. Med. Devices 3, 215–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, X. et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. Chemphyschem 13, 1054–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kneipp, J., Kneipp, H., Rajadurai, A., Redmond, R.W. & Kneipp, K. Optical probing and imaging of live cells using SERS labels. J. Raman Spectrosc. 40, 1–5 (2009).

    Article  CAS  Google Scholar 

  60. Farhane, Z., Bonnier, F., Casey, A. & Byrne, H. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst 140, 4212–4223 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Meister, K. et al. Label-free imaging of metal–carbonyl complexes in live cells by Raman microspectroscopy. Angew. Chem. Int. Ed. 49, 3310–3312 (2010).

    Article  CAS  Google Scholar 

  62. Butler, H.J. et al. Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced Raman spectroscopy. Analyst 140, 3090–3097 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ackermann, K.R., Henkel, T. & Popp, J. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. Chemphyschem 8, 2665–2670 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Harper, M.M., Dougan, J.A., Shand, N.C., Graham, D. & Faulds, K. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles. Analyst 137, 2063–2068 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Barrett, L., Dougan, J.A., Faulds, K. & Graham, D. Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection. Nanoscale 3, 3221–3227 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Faulds, K., Smith, W., Graham, D. & Lacey, R. Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst 127, 282–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Gill, D., Kilponen, R. & Rimai, L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature 227, 743–744 (1970).

    Article  CAS  PubMed  Google Scholar 

  68. Greene, P.R. & Bain, C.D. Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo. Colloids Surf. B Biointerfaces 45, 174–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Schulz, H. & Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25 (2007).

    Article  CAS  Google Scholar 

  70. Sene, C., McCann, M.C., Wilson, R.H. & Grinter, R. Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol. 106, 1623–1631 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schulz, H., Baranska, M. & Baranski, R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77, 212–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Rösch, P., Popp, J. & Kiefer, W. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants. J. Mol. Struct. 480–481, 121–124 (1999).

    Article  Google Scholar 

  73. Schmidt, M. et al. Raman imaging of cell wall polymers in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 395, 521–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Gierlinger, N. & Schwanninger, M. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 140, 1246–1254 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gierlinger, N., Keplinger, T. & Harrington, M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7, 1694–1708 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Asher, S.A. & Johnson, C.R. Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science 225, 311–313 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. Butler, H.J., McAinsh, M.R., Adams, S. & Martin, F.L. Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Anal. Methods 7, 4059–4070 (2015).

    Article  Google Scholar 

  78. Baranski, R., Baranska, M. & Schulz, H. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta 222, 448–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Baker, M.J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Diem, M., Romeo, M., Boydston-White, S., Miljković, M. & Matthäus, C. A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004). Analyst 129, 880–885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dumas, P., Sockalingum, G.D. & Sule-Suso, J. Adding synchrotron radiation to infrared microspectroscopy: what's new in biomedical applications? Trends Biotechnol. 25, 40–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Bhargava, R. Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66, 1091–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Palonpon, A.F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677–692 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Felten, J. et al. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat. Protoc. 10, 217–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Kong, L. et al. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat. Protoc. 6, 625–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Li, J.F. et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 8, 52–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Martin, F.L. et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat. Protoc. 5, 1748–1760 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Angel, S., Carrabba, M. & Cooney, T. The utilization of diode lasers for Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, 1779–1799 (1995).

    Article  Google Scholar 

  89. Müller, A. et al. Diode laser based light sources for biomedical applications. Laser Photonics Rev. 7, 605–627 (2013).

    Article  CAS  Google Scholar 

  90. Yan, F. & Vo-Dinh, T. Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sensor. Actuat. B Chem. 121, 61–66 (2007).

    Article  CAS  Google Scholar 

  91. Moore, D. & Scharff, R.J. Portable Raman explosives detection. Anal. Bioanal. Chem. 393, 1571–1578 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Draux, F. et al. Raman spectral imaging of single living cancer cells: a preliminary study. Analyst 134, 542–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Creely, C., Volpe, G., Singh, G., Soler, M. & Petrov, D. Raman imaging of floating cells. Opt. Express 13, 6105–6110 (2005).

    Article  PubMed  Google Scholar 

  94. Swain, R. & Stevens, M. Raman microspectroscopy for non-invasive biochemical analysis of single cells. Biochem. Soc. Trans. 35, 544–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Zoladek, A., Pascut, F.C., Patel, P. & Notingher, I. Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy. J. Raman Spectrosc. 42, 251–258 (2011).

    Article  CAS  Google Scholar 

  96. Vo-Dinh, T. Biomedical Photonics Handbook: Biomedical Diagnostics Vol. 2 (CRC press, 2014).

  97. Asher, S.A., Ludwig, M. & Johnson, C.R. UV resonance Raman excitation profiles of the aromatic amino acids. J. Am. Chem. Soc. 108, 3186–3197 (1986).

    Article  CAS  Google Scholar 

  98. Kumamoto, Y., Taguchi, A., Smith, N.I. & Kawata, S. Deep ultraviolet resonant Raman imaging of a cell. J. Biomed. Opt. 17, 076001 (2012).

    Article  PubMed  CAS  Google Scholar 

  99. Ivanda, M. & Furic´ć, K. Line focusing in micro-Raman spectroscopy. Appl. Opt. 31, 6371–6375 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Okada, M. et al. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc. Natl. Acad. Sci. USA 109, 28–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Schlücker, S., Schaeberle, M.D., Huffman, S.W. & Levin, I.W. Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem. 75, 4312–4318 (2003).

    Article  PubMed  CAS  Google Scholar 

  102. Minamikawa, T. et al. Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy. Histochem. Cell Biol. 139, 181–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Markwort, L., Kip, B., Da Silva, E. & Roussel, B. Raman imaging of heterogeneous polymers: a comparison of global versus point illumination. Appl. Spectrosc. 49, 1411–1430 (1995).

    Article  CAS  Google Scholar 

  104. Ma, J. & Ben-Amotz, D. Rapid micro-Raman imaging using fiber-bundle image compression. Appl. Spectrosc. 51, 1845–1848 (1997).

    Article  CAS  Google Scholar 

  105. Cooper, J. et al. Raman spectroscopy with a low-cost imaging CCD array. Spectrochim. Acta A Mol. Spectrosc. 50, 567–575 (1994).

    Article  Google Scholar 

  106. LaPlant, F. in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields Vol. 1 (eds. Matousek, P. & Morris, M.D.) 1–24 (Springer, 2010).

  107. Dieing, T. & Hollricher, O. High-resolution, high-speed confocal Raman imaging. Vib. Spectrosc. 48, 22–27 (2008).

    Article  CAS  Google Scholar 

  108. Harnly, J.M. & Fields, R.E. Solid-state array detectors for analytical spectrometry. Appl. Spectrosc. 51, 334A (1997).

    Article  CAS  Google Scholar 

  109. Li, Z., Deen, M.J., Kumar, S. & Selvaganapathy, P.R. Raman spectroscopy for in-line water quality monitoring—instrumentation and potential. Sensors 14, 17275–17303 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Carriere, J.T. & Havermeyer, F. Ultra-low-frequency Stokes and anti-Stokes Raman spectroscopy at 785 nm with volume holographic grating filters. SPIE BiOS Proceedings (Biomedical Vibrational Spectroscopy V: Advances in Research and Industry, January 21, 2012, San Francisco) 8219,821905 (2012).

  111. Pitt, G. D. et al. Engineering aspects and applications of the new Raman instrumentation. IEE Proceedings: Science, Measurement and Technology 152, 241–318 (2005).

  112. Tfayli, A. et al. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies. Appl. Spectrosc. 63, 564–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Ali, S.M. et al. Raman spectroscopic analysis of human skin tissue sections ex vivo: evaluation of the effects of tissue processing and dewaxing. J. Biomed. Opt. 18, 61202 (2013).

    Article  CAS  Google Scholar 

  114. Mariani, M.M., Lampen, P., Popp, J., Wood, B.R. & Deckert, V. Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. Analyst 134, 1154–1161 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Deegan, R.D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  CAS  Google Scholar 

  116. Filik, J. & Stone, N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 616, 177–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Filik, J. & Stone, N. Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J. Raman Spectrosc. 40, 218–224 (2009).

    Article  CAS  Google Scholar 

  118. Bonnier, F., Petitjean, F., Baker, M.J. & Byrne, H.J. Improved protocols for vibrational spectroscopic analysis of body fluids. J. Biophotonics 7, 167–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Esmonde-White, K.A., Esmonde-White, F.W., Morris, M.D. & Roessler, B.J. Characterization of biofluids prepared by sessile drop formation. Analyst 139, 2734–2741 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Esmonde-White, K.A., Le Clair, S.V., Roessler, B.J. & Morris, M.D. Effect of conformation and drop properties on surface-enhanced Raman spectroscopy of dried biopolymer drops. Appl. Spectrosc. 62, 503–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Byrne, H.J., Sockalingum, G. & Stone, N. in Biomedical Applications of Synchrotron Infrared Microspectroscopy: A Practical Approach (ed. Moss, D.) Ch. 4, 105–142 (Royal Society of Chemistry, 2011).

  122. Fullwood, L.M. et al. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy. Analyst 139, 446–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Wehbe, K., Filik, J., Frogley, M.D. & Cinque, G. The effect of optical substrates on micro-FTIR analysis of single mammalian cells. Anal. Bioanal. Chem. 405, 1311–1324 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Cui, L., Butler, H.J., Martin-Hirsch, P.L. & Martin, F.L. Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens. Anal. Methods 8, 481–487 (2016).

    Article  CAS  Google Scholar 

  125. Lee, K.-S. & El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Faulds, K., Littleford, R.E., Graham, D., Dent, G. & Smith, W.E. Comparison of surface-enhanced resonance Raman scattering from unaggregated and aggregated nanoparticles. Anal. Chem. 76, 592–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Nehl, C.L. & Hafner, J.H. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 18, 2415–2419 (2008).

    Article  CAS  Google Scholar 

  128. Lewis, I.R. & Edwards, H. Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (CRC Press, 2001).

  129. Liu, Z., Zhao, C., Han, L. & Mo, Y. Study on the configuration and applications of high spectral resolution Raman spectrometer. Guang Pu Xue Yu Guang Pu Fen Xi 30, 567–570 (2010).

    CAS  PubMed  Google Scholar 

  130. Wieboldt, D. Understanding Raman Spectrometer Parameters http://www.spectroscopyonline.com/understanding-raman-spectrometer-parameters (2010).

  131. Wiberley, S.E., Colthup, N.B. & Daly, L.H. Introduction to Infrared and Raman Spectroscopy 3rd edn. (Elsevier, 2012).

  132. Stone, N., Kendall, C., Smith, J., Crow, P. & Barr, H. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss. 126, 141–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, L. & Henson, M.J. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Appl. Spectrosc. 61, 1015–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemometr. Intell. Lab. Syst. 117, 100–114 (2013).

    Article  CAS  Google Scholar 

  135. Barman, I., Kong, C.-R., Singh, G.P. & Dasari, R.R. Effect of photobleaching on calibration model development in biological Raman spectroscopy. J. Biomed. Opt. 16, 011004 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Trevisan, J., Angelov, P.P., Carmichael, P.L., Scott, A.D. & Martin, F.L. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137, 3202–3215 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Naumann, D. in Biomedical Optical Spectroscopy, Proceedings of SPIE (Biomedical Optical Spectroscopy 68530G) (International Society for Optics and Photonics, 2008).

  138. Jolliffe, I. Principal Component Analysis (Wiley Online Library, 2002).

  139. Chen, G. & Shen-En, Q. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Geosci. Remote Sens. Soc. 49, 973–980 (2011).

    Article  Google Scholar 

  140. Lieber, C.A. & Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57, 1363–1367 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Mazet, V., Carteret, C., Brie, D., Idier, J. & Humbert, B. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometr. Intell. Lab. Syst. 76, 121–133 (2005).

    Article  CAS  Google Scholar 

  142. Savitzky, A. & Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  CAS  Google Scholar 

  143. Bocklitz, T., Walter, A., Hartmann, K., Rösch, P. & Popp, J. How to pre-process Raman spectra for reliable and stable models? Anal. Chim. Acta 704, 47–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Heraud, P., Wood, B.R., Beardall, J. & McNaughton, D. Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J. Chemometr. 20, 193–197 (2006).

    Article  CAS  Google Scholar 

  145. Trevisan, J. et al. Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy. J. Biophotonics 7, 254–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. de Sousa Marques, A., de Melo, M.C.N., Cidral, T.A. & de Lima, K.M.G. Feature selection strategies for identification of Staphylococcus aureus recovered in blood cultures using FT-IR spectroscopy successive projections algorithm for variable selection: a case study. J. Microbiol. Methods 98, 26–30 (2014).

    Article  CAS  Google Scholar 

  147. Lasch, P., Haensch, W., Naumann, D. & Diem, M. Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim. Biophys. Acta 1688, 176–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Ellis, D.I. & Goodacre, R. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131, 875–885 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Lloyd, G.R. et al. Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe. Analyst 139, 381–388 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Balabin, R.M., Safieva, R.Z. & Lomakina, E.I. Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines. Microchem. J. 98, 121–128 (2011).

    Article  CAS  Google Scholar 

  151. Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C. & Popp, J. Sample size planning for classification models. Anal. Chim. Acta 760, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Esbensen, K.H. & Geladi, P. Principles of proper validation: use and abuse of re-sampling for validation. J. Chemometr. 24, 168–187 (2010).

    Article  CAS  Google Scholar 

  153. Antonio, K.A. & Schultz, Z.D. Advances in biomedical Raman microscopy. Anal. Chem. 86, 30–46 (2013).

    Article  PubMed  CAS  Google Scholar 

  154. Parekh, S.H., Lee, Y.J., Aamer, K.A. & Cicerone, M.T. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophys. J. 99, 2695–2704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zumbusch, A., Holtom, G.R. & Xie, X.S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

    Article  CAS  Google Scholar 

  156. Krafft, C., Dietzek, B. & Popp, J. Raman and CARS microspectroscopy of cells and tissues. Analyst 134, 1046–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Evans, C.L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Le, T.T., Huff, T.B. & Cheng, J.-X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9, 42 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Gao, L. et al. Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed. Opt. Express 2, 915–926 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Garrett, N. et al. Label-free imaging of polymeric nanomedicines using coherent anti-stokes Raman scattering microscopy. J. Raman Spectrosc. 43, 681–688 (2012).

    Article  CAS  Google Scholar 

  161. Windbergs, M. et al. Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy. Anal. Chem. 81, 2085–2091 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Schuster, K.C., Reese, I., Urlaub, E., Gapes, J.R. & Lendl, B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal. Chem. 72, 5529–5534 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Majzner, K. et al. 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 138, 603–610 (2012).

    Article  Google Scholar 

  164. Caspers, P.J., Lucassen, G.W. & Puppels, G.J. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J. 85, 572–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Choi, J. et al. Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy. Biopolymers 77, 264–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Yu, C., Gestl, E., Eckert, K., Allara, D. & Irudayaraj, J. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detect. Prev. 30, 515–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Haka, A.S. et al. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res. 62, 5375–5380 (2002).

    CAS  PubMed  Google Scholar 

  168. Breitenbach, J., Schrof, W. & Neumann, J. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs. Pharm. Res. 16, 1109–1113 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Franzen, L., Selzer, D., Fluhr, J.W., Schaefer, U.F. & Windbergs, M. Towards drug quantification in human skin with confocal Raman microscopy. Eur. J. Pharm. Biopharm 84, 437–444 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Skoulika, S.G. & Georgiou, C.A. Rapid quantitative determination of ciprofloxacin in pharmaceuticals by use of solid-state FT-Raman spectroscopy. Appl. Spectrosc. 55, 1259–1265 (2001).

    Article  CAS  Google Scholar 

  171. Edwards, H., Farwell, D. & Webster, D. FT Raman microscopy of untreated natural plant fibres. Spectrochim. Acta A Mol. Biomol. Spectrosc. 53A, 2383–2392 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Morris, M.D. et al. Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue. J. Biomed. Opt. 10, 14014 (2005).

    Article  PubMed  CAS  Google Scholar 

  173. Prieto, M.C.H. et al. Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue. J. Biomed. Opt. 10, 44006 (2005).

    Article  PubMed  CAS  Google Scholar 

  174. Baker, R. et al. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst 132, 48–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Galvis, L., Dunlop, J.W.C., Duda, G., Fratzl, P. & Masic, A. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues. PLoS ONE 8, e63518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brose, K., Zouni, A., Broser, M., Müh, F. & Maultzsch, J. Polarised Raman measurements on the core complex of crystallised photosystem II. Phys. Status Solidi 246, 2813–2816 (2009).

    Article  CAS  Google Scholar 

  177. Blanch, E.W. et al. Is polyproline II helix the killer conformation? a Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. J. Mol. Biol. 301, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. McColl, I.H. et al. A new perspective on β-sheet structures using vibrational Raman optical activity: from poly(l-lysine) to the prion protein. J. Am. Chem. Soc. 125, 10019–10026 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Blanch, E.W., Hecht, L. & Barron, L.D. Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods 29, 196–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Nieto-Ortega, B. et al. Raman optical activity spectra and conformational elucidation of chiral drugs. The case of the antiangiogenic aeroplysinin-1. J. Phys. Chem. A 115, 2752–2755 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Yamamoto, S., Watarai, H. & Bourˇř, P. Monitoring the backbone conformation of valinomycin by Raman optical activity. Chemphyschem 12, 1509–1518 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Robert, B. Resonance Raman spectroscopy. Photosynth. Res. 101, 147–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Wood, B.R., Caspers, P., Puppels, G.J., Pandiancherri, S. & McNaughton, D. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal. Bioanal. Chem. 387, 1691–1703 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Darvin, M. et al. Non-invasive in vivo detection of the carotenoid antioxidant substance lycopene in the human skin using the resonance Raman spectroscopy. Laser Phys. Lett. 3, 460–463 (2006).

    Article  CAS  Google Scholar 

  185. Xie, C. & Li, Y.-q. Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques. J. Appl. Phys. 93, 2982–2986 (2003).

    Article  CAS  Google Scholar 

  186. Sowoidnich, K. & Kronfeldt, H.-D. Fluorescence rejection by shifted excitation Raman difference spectroscopy at multiple wavelengths for the investigation of biological samples. ISRN Spectrosc. 2012, 1–11 (2012).

    Article  CAS  Google Scholar 

  187. da Silva Martins, M.A. et al. Shifted-excitation Raman difference spectroscopy for in vitro and in vivo biological samples analysis. Biomed. Opt. Express 1, 617–626 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Matousek, P. & Stone, N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 12, 024008 (2007).

    Article  PubMed  CAS  Google Scholar 

  189. Keller, M.D. et al. Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation. J. Biomed. Opt. 16, 077006 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Matousek, P. et al. Noninvasive Raman spectroscopy of human tissue in vivo. Appl. Spectrosc. 60, 758–763 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Olds, W.J. et al. Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs. Forensic Sci. Int. 212, 69–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Stone, N. et al. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging–the next dimension. Chem. Sci. 2, 776–780 (2011).

    Article  CAS  Google Scholar 

  193. Ma, K. et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83, 9146–9152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yuen, J.M., Shah, N.C., Walsh, J.T. Jr ., Glucksberg, M.R. & Van Duyne, R.P. Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82, 8382–8385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Xie, H.N. et al. Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew. Chem. 124, 8637–8639 (2012).

    Article  Google Scholar 

  196. Sharma, B., Ma, K., Glucksberg, M.R. & Van Duyne, R.P. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135, 17290–17293 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Saar, B.G. et al. Label-free, Real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 49, 5476–5479 (2010).

    Article  CAS  Google Scholar 

  198. Littlejohn, G.R. et al. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering (SRS) microscopy. Plant Physiol. 168, 18–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  200. Nie, S. & Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  PubMed  Google Scholar 

  201. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Kneipp, K., Kneipp, H. & Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 39, 443–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Cîntaˇ Pînzaru, S., Pavel, I., Leopold, N. & Kiefer, W. Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering. J. Raman Spectrosc. 35, 338–346 (2004).

    Article  CAS  Google Scholar 

  204. Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker. Nano Lett. 7, 1591–1597 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Feng, S. et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron. 25, 2414–2419 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Premasiri, W. et al. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 109, 312–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Zeiri, L. SERS of plant material. J. Raman Spectrosc. 38, 950–955 (2007).

    Article  CAS  Google Scholar 

  208. McNay, G., Eustace, D., Smith, W.E., Faulds, K. & Graham, D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl. Spectrosc. 65, 825–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Graham, D. et al. Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 69, 4703–4707 (1997).

    Article  CAS  Google Scholar 

  210. Murgida, D.H. & Hildebrandt, P. Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy. Acc. Chem. Res. 37, 854–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Murgida, D.H. & Hildebrandt, P. Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev. 37, 937–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Böhme, R. et al. Biochemical imaging below the diffraction limit–probing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). J. Biophotonics 3, 455–461 (2010).

    Article  PubMed  CAS  Google Scholar 

  213. Stone, N. & Matousek, P. Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 68, 4424–4430 (2008).

    Article  CAS  PubMed  Google Scholar 

  214. Johansson, J., Sparén, A., Svensson, O., Folestad, S. & Claybourn, M. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules. Appl. Spectrosc. 61, 1211–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Buckley, K. & Matousek, P. Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis. J. Pharm. Biomed. Anal. 55, 645–652 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.J.B.'s project is mediated by the Centre for Global Eco-Innovation funding through the European Regional Development Fund (ERDF). Work in F.L.M.'s laboratories has been funded by the UK Engineering and Physical Sciences Research Council (EPSRC), the Rosemere Cancer Foundation and the UK Biotechnology and Biological Sciences Research Council (BBSRC). K.E.-W. acknowledges a Pilot and Feasibility grant from the Michigan Diabetes Research and Training (subsidiary of National Institutes of Health (NIH)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 2P30 DK020572).

Author information

Authors and Affiliations

Authors

Contributions

F.L.M. is the principal investigator who conceived the idea for and finalized the manuscript; H.J.B. wrote and compiled the manuscript and figures. L.A., B.B., G.C., K.E.-W., B.G., M.J.W., M.R.M. and N.S. provided information and feedback throughout the article; and K.C., J.D., N.J.F. and P.L.M.-H. provided feedback on the manuscript.

Corresponding authors

Correspondence to Martin R McAinsh, Nicholas Stone or Francis L Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, H., Ashton, L., Bird, B. et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc 11, 664–687 (2016). https://doi.org/10.1038/nprot.2016.036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing